COOLING LOAD ESTIMATE FORM

HEAT GAIN FROM

 

QUANTITY

FACTORS

 

 

BTU/Hr.

 

DAY

 

 

 

 

 

 

 

 

 

(Quantity x Factor)

1.

WINDOWS: Heat gain from the sun.

 

 

No

Inside

Outside

(Area

 

 

 

Shades*

Shades*

Awnings* X Factor)

 

Northeast

*

These factors are for single glass

 

____sq. ft.

60

25

20 ____

Use

____

 

East

 

____sq. ft.

80

40

25 ____

only

____

 

 

only. For glass block, multiply the

 

 

Southeast

 

 

____sq. ft.

75

30

20 ____

the

____

 

 

above factors by 0.5; for double

 

 

South

 

 

____sq. ft.

75

35

20 ____

largest

____

 

 

glass or storm windows, multiply the

 

Southwest

 

above factors by 0.8.

 

____sq. ft.

110

45

30 ____

load.

____

 

West

 

 

 

____sq. ft.

150

65

45 ____

Use

____

 

Northwest

 

 

 

____sq. ft.

120

50

35 ____

only

____

 

North

 

 

 

____sq. ft.

0

0

0 ____

one.

____

 

 

 

 

 

 

 

 

 

 

2.

WINDOWS: Heat by conduction

 

 

 

 

 

 

 

 

 

(Total of all windows.)

 

 

 

 

 

 

 

_____

 

Single glass

 

 

____sq. ft.

 

14

 

 

 

 

Double glass or glass block

 

____sq. ft.

 

7

 

 

 

_____

 

 

 

 

 

 

 

3.

WALLS: (Based on linear feet of wall)

 

Light Construction

Heavy Construction

 

 

a. Outside walls

 

 

 

 

 

 

 

_____

 

North Exposure

 

____ ft.

30

 

20

 

 

Other than North exposure

 

____ ft.

60

 

30

 

_____

 

b. Inside Walls (between conditioned and

 

 

 

 

 

 

 

_____

 

unconditioned spaces only.)

 

____sq. ft.

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

ROOF OR CEILING: (Use one only)

 

 

 

 

 

 

 

_____

 

a. Roof, uninsulated

 

____sq. ft.

 

19

 

 

 

 

b. Roof, 1 inch or more insulation

 

____sq. ft.

 

8

 

 

 

_____

 

c. Ceiling, occupied space above

 

____sq. ft.

 

3

 

 

 

_____

 

d. Ceiling, insulated, with attic space above

 

____sq. ft.

 

5

 

 

 

_____

 

e. Ceiling, uninsulated, with attic space above

 

____sq. ft.

 

12

 

 

 

_____

 

 

 

 

 

 

 

 

 

5.

Floor: (Disregard if floor is directly on ground or

____sq. ft.

 

3

 

 

 

_____

 

over a basement.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.

NUMBER OF PEOPLE

 

____

 

600

 

 

 

_____

 

 

 

 

 

 

 

 

 

7.

LIGHTS AND ELECTRICAL EQUIPMENT IN USE

____watts

 

3

 

 

 

_____

 

 

 

 

 

 

 

 

 

 

8.

DOORS AND ARCHES CONTINUOUSLY

 

 

 

 

 

 

 

_____

 

OPENED TO UNCONDITIONED SPACE: (TOTAL

____ft.

 

300

 

 

 

 

LINEAR FEET OF WIDTH.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.

SUBTOTAL

 

 

*****

 

*****

 

 

 

_____

 

 

 

 

 

 

 

 

10. TOTAL COOLING LOAD (BTU per hour to be used

 

 

 

 

 

 

 

 

for selection of room air conditioner(s).)

____ Total in Item 9 X ____

(Factor from Map) =

____

 

 

 

 

 

 

 

 

 

 

 

 

5

60

Page 62
Image 62
Friedrich 2008, 2009 service manual Cooling Load Estimate Form, Heat Gain from Quantity Factors, Day

2009, 2008 specifications

Friedrich 2008 and 2009 represent significant advancements in heating and cooling technology, particularly in the realm of air conditioning systems. Friedrich is known for producing robust and efficient HVAC solutions tailored for both residential and commercial applications. These models are particularly noteworthy for their innovative features and energy-efficient technologies that enhance user comfort and lower operational costs.

One of the main characteristics of the Friedrich 2008 and 2009 models is their emphasis on energy efficiency. Both units are designed to meet or exceed Energy Star standards, which indicates that they use less energy compared to standard models, contributing to greener living solutions. The incorporation of efficient compressors and high SEER (Seasonal Energy Efficiency Ratio) ratings ensures that users save money on their electricity bills while enjoying optimal cooling performance.

The units also feature advanced inverter technology, which allows for variable speed operation. This means that the system can adjust its cooling capacity based on the current temperature needs, resulting in more consistent comfort while reducing wear and tear on the equipment. Additionally, the inverter technology operates more quietly compared to traditional systems, making these models suitable for both home environments and commercial settings.

Friedrich 2008 and 2009 also provide users with enhanced control options. The inclusion of smart technology and Wi-Fi connectivity allows for remote monitoring and temperature adjustments via smartphones or tablets. Users can create schedules, set temperature preferences, and receive maintenance alerts, contributing to a more user-friendly experience.

Moreover, these models are designed with robust construction, featuring durable materials that withstand various weather conditions. Their compact footprint and sleek design make them suitable for window installation, while an array of sizes accommodates spaces of different dimensions.

Additionally, the air filtration systems in Friedrich 2008 and 2009 units improve indoor air quality. They effectively capture dust, allergens, and other particulates, ensuring a healthier environment for occupants.

In summary, Friedrich 2008 and 2009 models stand out for their energy efficiency, innovative inverter technology, smart controls, and robust construction. With a focus on user comfort and environmental responsibility, these models provide reliable solutions for effective heating and cooling in diverse applications.