Heat Controller HBH/V Performance Data Selection Notes, Engineering Design Guide, Hbh/V Series

Models: HBH/V

1 35
Download 35 pages 35.8 Kb
Page 8
Image 8
Performance Data

Engineering Design Guide

HBH/V SERIES

Heat Controller, Inc.

 

 

 

Performance Data

Selection Notes

For operation in the shaded area when water is used in lieu of an anti-freeze solution, the LWT (Leaving Water Temperature) must be calculated. Flow must be maintained to a level such that the LWT is maintained above 40°F [4.4*C] when the JW3 jumper is not clipped (see example below). This is due to the potential of the refrigerant temperature being as low as 32°F [0°C] with 40°F [4.4°C] LWT, which may lead to a nuisance cutout due to the activation of the Low Temperature Protection. JW3 should never be clipped for standard range equipment or systems without antifreeze.

Example:

At 50°F EWT (Entering Water Temperature) and 2.25 gpm/ton, a 3 ton unit has a HE of 27,300 Btuh. To calculate LWT, rearrange the formula for HE as follows:

HE = TD x GPM x 500, where HE = Heat of Extraction (Btuh); TD = temperature difference (EWT - LWT) and GPM = U.S. Gallons per Minute.

TD = HE / (GPM x 500)

TD = 27,300 / (6.75 x 500)

TD = 8°F

LWT = EWT - TD

LWT = 50 - 8 = 42°F

AT 80/67°F

 

 

 

Heating - EAT 70°F

 

 

 

 

 

 

 

 

 

 

 

 

/Tot

kW

 

HR

EER

Airflow

HC

kW

HE

LAT

COP

tio

 

CFM

 

 

 

 

 

 

 

 

 

 

 

recommended

 

710

11.6

1.05

8.2

85.1

3.25

 

825

11.7

1.02

8.4

83.2

3.38

 

 

 

 

 

3

0.58

 

24.1

38.3

710

13.6

1.09

10.1

87.8

3.66

5

0.59

 

24.4

38.3

825

13.8

1.06

10.3

85.5

3.81

3

0.57

 

24.3

39.2

710

14.2

1.09

10.7

88.5

3.81

5

0.58

 

24.7

39.2

825

14.4

1.06

10.9

86.1

3.97

2

0.56

 

24.4

39.8

710

14.4

1.09

10.9

88.8

3.86

5

0.57

 

24.7

39.8

825

14.6

1.06

11.1

86.3

4.02

6

0.65

 

25.1

35.3

710

16.1

1.15

12.3

90.9

4.08

8

0.66

 

25.5

35.3

825

16.2

1.12

12.6

88.2

4.25

5

0.61

 

25.2

37.9

710

16.7

1.15

13.0

91.8

4.25

8

0.62

 

25.5

37.9

825

16.9

1.12

13.3

89.0

4.42

5

0.6

 

25.2

38.3

710

16.9

1.16

13.2

92.1

4.30

8

0.61

 

25.6

38.3

825

17.1

1.12

13.5

89.2

4.47

8

0.74

 

25.2

30.7

710

18.3

1.18

14.5

93.9

4.56

0

0.75

 

25.6

30.7

825

18.5

1.14

14.8

90.8

4.75

7

0.69

 

25.3

33.4

710

19.1

1.18

15.2

94.8

4.73

0

0.70

 

25.6

33.4

825

19.3

1.15

15.5

91.6

4.93

7

0.67

 

25.3

34.1

710

19.3

1.18

15.4

95.1

4.78

0

0.68

 

25.6

34.1

825

19.5

1.15

15.7

91.9

4.98

 

 

 

 

 

 

 

 

 

 

 

0

0.85

 

24.8

25.9

710

20.4

1.21

16.5

96.6

4.93

3

0.86

 

25.1

25.9

825

20.6

1.18

16.8

93.2

5.13

9

0.78

 

25.1

28.6

710

21.2

1.22

17.3

97.7

5.10

2

0.80

 

25.4

28.6

825

21.5

1.18

17.6

94.1

5.31

9

0.77

 

25.1

29.4

710

21.5

1.22

17.5

98.0

5.15

1

0.78

 

25.5

29.4

825

21.7

1.19

17.8

94.3

5.36

2

0.97

 

24.0

21.4

710

22.4

1.23

18.4

99.2

5.35

4

0.98

 

24.3

21.4

825

22.7

1.19

18.8

95.4

5.57

In this example, as long as the EWT does not fall below 50°F, the system will operate as designed. For EWTs below 50°F, higher flow rates will be required (open loop systems, for example, require at least 2 gpm/ton when EWT is below 50°F).

7

Page 8
Image 8
Heat Controller HBH/V manual Performance Data Selection Notes, Engineering Design Guide, Hbh/V Series, Heat Controller, Inc