Data Mode AT COMMANDS

Figure 5. Modem-on-Hold: Initiating a Voice Call in Data Mode

Enable MOH

(+PMH=0)

Command Mode

(+++AT)

Request to go

on hold

(+PMHR)

Server

Accepts No (Returns 0)

Request

?

Yes (Returns 1-13)

Flash Hook

(+PMHF)

Initiate Call

Finish Call

Flash Hook

(+PMHF)

Disconnect

No

?

 

Yes

End Data Connection

(ATH)

Go Back Online

(ATO)

A9112-01

The following sequence describes how to configure the modem for MOH to process an incoming voice call while online. First, MOH must be enabled. The +PMH and +PCW commands are used to enable MOH and to capture the Call Waiting tone which is sent when the voice call comes in. To enable MOH, set +PMH=0 and +PCW=0. Next, to enable Caller ID information (optional), by setting +VCID=1. Now the modem is configured for the incoming call. When you receive the incoming call, the modem will get a ring indication and the software/application will issue a

+++AT to put the modem in command mode. Then, you will be prompted to either “Accept” or “Reject” the call based on the Caller ID information (if enabled). If you reject the call, an ATO command is issued to perform a Quick Connect to stay online. If you accept the call, the data connection is put on hold, and the modem send a request to the server to go on hold using the +PMHR command. The server will accept enable (1–13 returned) or reject (0 returned) the request. If the server accepts the request to go on hold, the modem issues the +PMHF to flash the

536EX Chipset Developer’s Manual

33

Intel Confidential

Page 33
Image 33
Intel 537EX manual Modem-on-Hold Initiating a Voice Call in Data Mode

537EX specifications

The Intel 537EX is a powerful and innovative embedded processor designed for a range of applications, particularly in the fields of industrial automation, telecommunications, and transport management systems. This processor is a member of Intel's embedded product line, tailored specifically to meet the demands of systems that require high reliability and long lifecycle support.

One of the main features of the Intel 537EX is its multi-core architecture, which enables efficient parallel processing capabilities. This allows for the execution of multiple tasks simultaneously, significantly improving overall system performance. The processor also incorporates Intel’s advanced power management technology, which ensures that the device consumes energy efficiently, enhances thermal performance, and prolongs the lifespan of the system.

The Intel 537EX supports a range of connectivity options, including high-speed Ethernet and Serial ATA interfaces. This ensures that it can easily integrate into existing systems, seamlessly supporting applications that require robust data transfer capabilities. Additionally, the processor is equipped with multiple I/O ports, facilitating the connection of various peripherals and sensors, which is crucial in industrial applications.

One of the standout technologies within the Intel 537EX is its support for hardware virtualization. This feature allows for the creation of multiple virtual environments within a single physical structure, optimizing resource utilization and enhancing system flexibility. Additionally, Intel’s integrated security technologies provide a significant layer of protection against potential threats, ensuring that embedded systems remain secure.

Another characteristic of the Intel 537EX is its extensive software support, which includes compatibility with various operating systems and development environments. This versatility makes it an attractive choice for developers looking to build or upgrade their embedded systems. With access to Intel's comprehensive software tools, developers can quickly optimize applications to take full advantage of the processor's capabilities.

The Intel 537EX also boasts excellent thermal performance, allowing it to operate efficiently in harsh environments. This is crucial for embedded applications in industrial settings where temperature fluctuations are common. Overall, the Intel 537EX is engineered to deliver high-performance processing power, superior connectivity, and enhanced security, solidifying its position as a reliable choice for demanding embedded applications.