Intel 537EX manual Uart, Thr, Rbr

Page 93

Parallel Host Interface 16C450/16C550A UART

modem for each data interrupt, instead of only a single byte, as in 16C450 mode. The following diagram shows how the FIFO is used. Host software using this FIFO capability can significantly reduce system overhead by reducing the number of times that interrupt service routines are called.

Figure 12. FIFO Buffers for Transmitter and Receiver

Modem

 

UART

 

 

Transmitter

Host

Transmitter

 

Modem Transmitter FIFO

Holding

(DTE)

Shift

 

Register

Register

 

 

 

(THR)

 

 

 

 

 

UART Transmitter Flow Diagram

 

 

Modem

 

UART

 

 

Receiver

Host

Receiver

 

Modem Receiver FIFO

Buffer

Shift

(DTE)

 

Register

Register

 

(RBR)

 

 

UART Receiver Flow Diagram

 

 

The register addresses are divided into two types: single-register access and multiple-register access. Most of the UART registers are single-register access (that is, only one internal register is accessible for a given register address). UART register addresses 3–7 are used to access a single internal register. The remainder of the UART register addresses (0–2) are used to access two or more internal registers.

Register address 2 is used to write FIFO control information into the FCR (FIFO Control register) and to read the IIR (Interrupt Identity register).

Register address 1 is used to read and write data to the IER (Interrupt Enable register) [when DLAB = 0] and the MS DLM (Divisor Latch register) [when DLAB = 1].

Register address 0 is used to read data from the RBR (Receiver Buffer register) [when DLAB = 0], write data to the THR (Transmitter Holding register) [when DLAB = 0], and read and write to the LS DLL (Divisor Latch register) [when DLAB = 1]. The UART registers and FIFO usage are described in the following sections.

536EX Chipset Developer’s Manual

93

Intel Confidential

Image 93
Contents Developer’s Manual 537EX ChipsetIntel Confidential Contents Figures Tables Revision History Date Revision Description001 Initial release Controllerless Modem Driver Overview IntroductionWindows 95 and Windows Tapi V.90/V.92 and V.34 Data ModesUnimodem Intelsdb.VXDModem Connection Overview DTE-to-DCE Data Rates for Each Mode AT Commands OverviewDCE-to-DCE Data Rates for Each Mode DCE-to-ISP Data Rates for V.90 ModeDelayed Call Sending CommandsDTE-Modem Data Rate Response Codes Numeric TextAT Escape Sequences Command FunctionDial Modifier Dialing digitsCommand Function Default Range Reported By &Vn Data Mode Command SummaryIntel Confidential Intel Confidential Intel Confidential +ESA +EB+ESR +ETBM44/V.42/V.42 bis MNP Command Summary Processes flow control characters and passes to local Fax Class 1 Command Summary Fax Identity Command SummaryIS-101 Voice Command Summary Voice DTE→DCE Character PairsResponse Hex Code Function Voice DTE←DCE Character Pairs Voice DTE →DCE Character PairsDEL ESCDial Modifiers Register Function Default Range Units Reported by &VnRegister Summary AsciiRegister Function Default Range Units Using AT Commands to Access the S-Registers Sn?, Sn=x, ? Modem Responses and Command Echo En, Vn, Xn, Wn, QnModem Setup Host Modem Response Command Disable Enable Data Reporting Wn MappingDTE Resets and then configures the modem to Nvram user profile AT Commands Product Information Establishing a Modem Connection A, D, DS = n, S0Product Identification Information Online Command Mode Escape Codes, On Hanging Up Hn, S10, Zn, &D2Modem-to-Modem Connection Data Rates Intel Confidential Modem-on-Hold Incoming Voice Call in Data Mode Modem-on-Hold Initiating a Voice Call in Data Mode Intel Confidential Carrier Description Supported Modulation TypesLocal Analog Loopback AT&T1 Diagnostic Testing S18, &TnLocal Modem or Test Modem Local Analog Loopback With Self-Test AT&T8AT Escape Sequences Time-Independent Escape SequenceLicensing Requirements for Hayes Escape Sequence Example Data Mode Command Descriptions Command Default DescriptionHayes* Escape Sequence Host in either online or off-line command mode Previously stored in the Nvram with the AT&Zn=x commandEcho disabled Echo enabledATI2 DTESn=x Modem dials a telephone number touch tone dialing CommandNumeric or verbose form Numeric formSubsequent commands to be ignored DisconnectingResets the modem and recalls user profile DCD or Rlsd signalActive Profile AT&V0Stored Profile Telephone NumbersCommand to see the stored telephone number S-register configurations into the Nvram user profile ‘n’Select profile = 0-9 a B C D # * T P R W @Indication Definition Command Default+EB Nrzi encoding and decoding disabled CRC generation and checking disabledSecondary channel operation, and vice versa 12/V.34+ETBM +ESR+GSN +GMR+IFC +ILRR=m+MA? will display a list of enabled alternative modulations +MS command description= carrier,carrier,…carrier If +MS = ,0,, no alternative modulations will be availableBELL103 Carrier DescriptionBELL212 +MS=m See ‘m’+PMHF +PHSW=Value Description +PMHREnable Short Phase 1 and Short Phase Conjunction with the +PSS commandEnable Short Phase Disable short Phase 1 and Short PhaseOperating Modes Mode Features+ES Settings Answer Modem 44/V.42/V.42 bis and MNP Data Modem Command DescriptionsResulting +ES Connection Types +ES=1, 0 +ES=4, 4 +ES=3, 0 +ES=3, 2\Bn \Kn Direction +DR=m+DS=m Max string+EFCS=m 3768Decimal value and the format is as follows Display messages when +ER =+ER=m +ER LapmControl during non-error control operation Setting is ignored if origrqst=6Non-error control operation +ES=mFax Class 1 Commands Fax Identity CommandsFax Identity Command Descriptions +FMFR?/+FMIValue Modulation Speed bps Mod Selection TableClass 1 DTE-Generated Hdlc Frame Information AT+FTH=mod 30 Hdlc Frame FormatFax Mode Command Descriptions +FCLASS?+FCLASS +FRS=m +FRH=m+FTH=m IS-101 Voice Mode AT Commands Voice Mode Command Descriptions Dtmf Detection ReportingRelay Control +FLO=m +VDR=m See ‘m’ Enable report FunctionCaller ID report Command Reserved Distinctive ringing All Defaults = ‘C’, BB860980, BFE63883, BB863EE0Event Description +VEM=m See ‘m’EIGHT-DIGIT HEX Code B B 8 6 3 E E EX Value BIT Value EventHEX Digit Location Local telephone, or speaker 128 Nominal transmit level+VIP Preassigned Voice I/O Labels Label+VLS=m Voice I/O Primitive Codes Relay/Playback ControlPrimitive Code Description +VSD=m See ‘m’ +VRX141 AD3 3-bit Adaptive differential pulse code modulation +VSM=? command to obtain supported sampling rates+VSM=m Range 4800, 7200, 8000, and 11025 samples/secondSerial CmlHard Disk Compression100 Default value 1 second Factory default is ‘0’100 Range 5-255 units of 0.01 seconds+VTS=m None Dual tones may be sent using the following formatSpecified by +VTD=m This sends a 500 ms period of silenceCommand Default Description Register Command Descriptions S10 Range Seconds Default 0 seconds Escape sequencesS16 S22 118 S21S25 S30Modem or when a ring signal is detected Modem exits sleep mode whenever the host reads or writes toSleep mode is disabled by setting S33 to ‘0’ Inactive state whenTag Description Caller ID Tags for Formatted ReportingRing Uart Emulation in Intelsdb.VxD Uart Emulation in the Controllerless ModemUart THRRBR Parallel Host Interface Uart Register Bit Assignments Uart Register Definitions Scratch Register SCRModem Status Register MSR OE Overrun Error-Not supported Bit Framing errorLine Status Register LSR StackProcedure is as follows IER Interrupt Enable registerModem Control Register MCR Line Control Register LCRBit Fifo Control Register FCRInterrupt Identity Register IIR Interrupt Control FunctionsID1 ID0 ID bit 2 for Fifo mode Interrupt Enable Register IERTransmitter Holding Register THR Dlab =Divisor Latch Registers DLM and DLL Receiver Buffer Register RBRProgrammable Data Rates Data Rate Divisor Number Divisor Latch HexFifo Polled Mode Operation Fifo Interrupt Mode Operation16C550A Uart Fifo Operation 102536EX Chipset Developer’s Manual 103

537EX specifications

The Intel 537EX is a powerful and innovative embedded processor designed for a range of applications, particularly in the fields of industrial automation, telecommunications, and transport management systems. This processor is a member of Intel's embedded product line, tailored specifically to meet the demands of systems that require high reliability and long lifecycle support.

One of the main features of the Intel 537EX is its multi-core architecture, which enables efficient parallel processing capabilities. This allows for the execution of multiple tasks simultaneously, significantly improving overall system performance. The processor also incorporates Intel’s advanced power management technology, which ensures that the device consumes energy efficiently, enhances thermal performance, and prolongs the lifespan of the system.

The Intel 537EX supports a range of connectivity options, including high-speed Ethernet and Serial ATA interfaces. This ensures that it can easily integrate into existing systems, seamlessly supporting applications that require robust data transfer capabilities. Additionally, the processor is equipped with multiple I/O ports, facilitating the connection of various peripherals and sensors, which is crucial in industrial applications.

One of the standout technologies within the Intel 537EX is its support for hardware virtualization. This feature allows for the creation of multiple virtual environments within a single physical structure, optimizing resource utilization and enhancing system flexibility. Additionally, Intel’s integrated security technologies provide a significant layer of protection against potential threats, ensuring that embedded systems remain secure.

Another characteristic of the Intel 537EX is its extensive software support, which includes compatibility with various operating systems and development environments. This versatility makes it an attractive choice for developers looking to build or upgrade their embedded systems. With access to Intel's comprehensive software tools, developers can quickly optimize applications to take full advantage of the processor's capabilities.

The Intel 537EX also boasts excellent thermal performance, allowing it to operate efficiently in harsh environments. This is crucial for embedded applications in industrial settings where temperature fluctuations are common. Overall, the Intel 537EX is engineered to deliver high-performance processing power, superior connectivity, and enhanced security, solidifying its position as a reliable choice for demanding embedded applications.