Intel 8080 manual

Page 98
Image 98
Contents Page Programmable Communication Interface Clock Generator for 8080ASystem Controller for 8080A Programmable Peripheral InterfaceContents Chapter Packaging Information 127Peri pherals Page Conventional System Programmed Logic Advantages of Designing With MicrocomputersMicrocomputer Design Aids 1IIII~Iff1 Applications ExampleIii Application Peripheral Devices EncounteredAccumulator Typical Computer SystemArchitecture of a CPU Program Counter Jumps, Subroutines and the Stack Instruction Register and DecoderArithmetic/Logic Unit ALU Control CircuitryAddress Registers Computer OperationsMemory Write Instruction FetchMemory Read Wait memory synchronizationPage Page INTE~ 8080 Photomicrograph With Pin DesignationsArchitecture of the 8080 CPU RegistersData Bus Buffer Arithmetic and Logic Unit ALUInstruction Register and Control Processor CycleMachine Cycle Identification State Transition Sequence HaltStatus Information Definition Status Word ChartStatus Bit Definitions CPU State Transition Diagram ?~~Rr\ ONE ,----- ~ State Associated Activities ~2. State DefinitionsRLrL- rL rL rL-rL- rLrL Interrupt Sequences¢2 -+--sLJJlL-..rrL~LJLLJTLJJ\.lJL START-UP of the 8080 CPU Hold SequencesHalt Sequences 11. Halt Timing ~~~~t==p 001 STATUS6 Xram ~A~~~ll ~iA~~~11~iA~~ll,12 ~iA~~~11Value 111 000 001 010 011 100 101Typical Computer System Block Diagram Basic System OperationClock Generator and High Level Driver CPU Module Design8080 CPU Clock Generator DesignHigh Level Driver Design ClK 0.......-..-.-----.. tf1A TTL~50ns Ststb !1 Page RAM Interface Interfacing the 8080 CPU to Memory and I/O DevicesROM Interface Ill Isolated I/O InterfaceGeneral Theory Memory Mapped I/OMemr to AddressingInterface Example 13 Format 15 FormatInstruction and Data Formats 8080 Instruction SETByte Three I D7 Byte OneByte Two Addressing ModesDescription Format Symbols and AbbreviationsSymbols Meaning AllMOV r1, r2 Move Register Content of register r2 is moved to register r1Data Transfer Group Reg. indirect0 I R p 0 I R1 I 0 IArithmetic Group 0 I 0 oR 0 I 0 I D I DOCR M Decrement memory I ILogical Group Cycles States Addressing reg. indirect Flags Z,S,P ,CY,AC~11~ I 0 I 1 I 1 II 1 I 1 o I 1 I 1 I 1 1 10 I 0 I 0 I 1 I0 I 0 1 I Cycles States Flags noneBranch Group 000SP ~ SP + I c c I c I 0 I 0 ICcondition addr Push rp Stack, I/O, and Machine Control GroupI 1 o 1 I R~ data Exchange stack top with Hand L~ SP + Cycles States Flags NoneInstruction SET Programmable Peripheral Interface 8224 8080A-1 8228 8080A-2 8080A M8080-A Page Schottky Bipolar PIN NamesOscillator Functional DescriptionGeneral Clock GeneratorPower-On Reset and Ready Flip-Flops Ststb Status StrobeCharacteristics Crystal RequirementsInput 8pFT42 T01 T02 T03 Toss Characteristics For tCY = 488.28 nsExample TORS tORH tOR FMAXPIN Configuration Block Diagram DbinGeneral BlockSignals Inta None ControlWaveforms Characteristics TA = Oc to 70C Vee = 5V ±5%TE~r Hlda to Read Status OutputsVTH GoUTStstb VCC=5V·-c GND ---. rIntel Silicon Gate MOS 8080 a ?oo .H8080A Functional PIN Definition VeeVss Capacitance CharacteristicsAbsolute Maximum RATINGS· IOl = 1.9mA on all outputsTiming Waveforms =..... -r-DATAIN~I~~~ ~~1 t CYCharacteristics Typical ~ Output Delay VS. a CapacitanceInstruction SET Typical InstructionsSilicon Gate MOS 8080.A Summary of Processor InstructionsInfel Silicon Gate MOS 8080A-1 Unit Symbol Parameter TypMax ~-t Fft~l~tOF.I TYPICAL!J. Output Delay VS. ~ Capacitance Infel Silicon Gate MOS 8080 A-2 J1A +10Cout VAOOR/OATA = VSS + O.45VSymbol Parameter Min Unit Test ConditionTypical ~ Output Delay VS. ~ Capacitance Min. Max. Unit Test ConditionPage Intel . Silicon Gate MOS M8080A Ence, arithmetic or logical, rotate Immediate mode or I/O instructionsRegister to regist~r, memory refer Interrupt instructionsSummary of Processor Instructions Llf17Silicon Gate MOS M8080A M8080A Functional PIN DefinitionOperation Absolute Maximum RatingsIOL = 1.9mA on all outputs Symbol Parameter Min. Max Unit Test Condition Silicon Gate MOS M8080A ~I~Page ROMs 8702A 8704 8708 8316A Page Silicon Gate MOS 8702A Voo Operating CharacteristicsPIN Connections ~10% Switching Characteristics1N= Vee = V ce\ \ Cs=o.~Characteristics for Programming Operation Operating Characteristics for Programming OperationSymbol Test SYMBOLTESTMIN. TYP. MAX. Unit ConditionsProgramming Operation of the 8702A Switching Characteristics for Programming OperationCS = OV Program OperationIII a Erasing Procedure Operation of the 8702A in Program ModeII. Programming of the 8702A Using Intel Microcomputers Programming Instructions for the 8702APage PIN Configurations Block Diagram PIN NamesIBB CommentIII VOH1Waveforms Symbol Parameter Typ. Max. Unit ConditionsTest Conditions Max UnitProgramming Current RnA Program Pulse Amplitude Parameter MinTpF Program Pulse Fall Time +-------1 Read/Program/Read TransitionsCS/WE = +12V 150 r PEEEf!1EJEZPlEzz$m=2!·m·· IccSilicon Gate MOS CS=O.O CommentMAX Unit Outa200ns 500ns 300 ns ~~~H --4!~--~N-~-TA-AL-~-DU-T--~\100 ns 7001 JJ.s Typical Characteristics Cs .. o.~ ~rSilicon Gate MOS Ilkc IlclIlpc ILOCIN Conditions of Test for CharacteristicsCoUT ~ ~ ~ Pppp Mask Option SpecificationsMarking Customer Number OateBlank ~ r ------ + -- t --- . L . ------ rJTitle Card 79-80PIN Configuration Block Diagram Intel Silicon Gate MOS ROM 8316ACAPACITANCE2 TA = 25C, f = 1 MHz 400Conditions of Test for OU~TVALID WaveformsTypical D.C. Characteristics ILICO.N Gate MOS ROM 8316ASTO CustomerNumber Oate Mask Option Speci FicationsTitle Card COM~ANY NameRAMs Page PIN Configuration Logic Symbol Block Diagram Silicon Gate MOS10H = -150 p.A ~E~~=~utP~-t-·7~igh-~\/oltage-~------ ---- --i2-+---=~== ~== OC +----+Conditions of Test 00 ~Page PIN Configuration Logic Symbol Block Diagram Silicon Gate MOSICC1 Symbol Parameter Min. Typ.rIII ICC2Input Pulse Rise and Fall Times 20nsec Write 1~-tAW--.I-----I550 200 Timing Measurement Reference Level VoltPage Silicon Gate MOS Comment Power Dissipation Watt5V to +7V TA = OOC to +70C, Vee = 5V ±5% unless otherwise specifiedCapacitance T a = 25C, f = 1MHz 85o-·-···T+--~~~TL~~~EEt~~~P-.± Conditions of TestTypical A.C. Characteristics ~~~b~.JSilicon Gate MOS 8102A-4 TA = OC to +70 o e, Vcc = 5V ±5% unless otherwise specified 300 450230 Access Time VS LOAD·CAPACITANCE VIN Limits VS. TemperatureAccess Time VS Ambient Temperature Output Source Current VSFully Decoded Random Access BIT Dynamic Memory PIN Configuration Logic Symbol Block DiagramSilicon Gate MOS 81078·4 IOOAV2II.~ IMP~ri~~CERef = Read Cycle4000 Write CycleTypical Characteristics Numbers in parentheses are for minimum cycle timing in ns Symbol Parameter Min MaxRWc 590 CD Refresh Power DissipationStandby Power System Interfaces and FilteringTypical System BIT 256 x 4 Static Cmos RAM VOR ICC2VIH VOL VOH IcccrInput Pulse Rise and Fall Times 20nsec Timing Measurement Reference Level Volt~I----- t CW2 ------ . t PIN Configuration Logic Symbol Schottky BipolarConditions of Test Voo- --- ---TPower Supply Current Drain and Power Dissipation All driver outputs are in the state indicatedTypical System Dynamic Memory Refresh Controller Page 8212 8255 8251 Page PIN Configuration Logic Diagram EIGHT-BIT INPUT/OUTPUT PortFunctional Description OS2Are 3-state Basic Schematic SymbolsII. Gated Buffer 3·STATE Gated BufferInterrupt Instruction Port III. Bi-Directional Bus DriverIV. Interrupting Input Port BI-DIRECTIONAL BUS Driver8080 4 VI. Output Port With Hand-ShakingVII Status Latch OvJ \.. -4~Vee Viii SystemOUT SystemIX System DalN-t?!NrJ 1G~D L-~Characteristics Absolute Maximum Ratings·Typical Characteristics 052 ~OUT Tpw12 pF Switching CharacteristicsTA = OC to + 75C Vee = +5V ± 5% Programmable Peripheral Interface ~~~lEI~S 1-- +SVRead/Write and Control Logic GeneralData Bus Buffer Basic Functional DescriptionGroup a and Group B Controls ResetPIN Configuration Ports A, B, and CDetailed Operational Description Mode SelectionSingle Bit Set/Reset Feature PA 7 ·pAoInterrupt Control Functions Operating Modes Mode 0 Basic Input/OutputMode 0 Timing Mode 0 Port Definition Chart Mode 0 Configurations119 Operating Modes Mode 1 Strobed Input/Output · / ,4Intr Interrupt Request Input Control Signal DefinitionIBF Input Buffer Full F/F Inte aOutput Control Signal Definition InteaOperating Modes Combinations of ModeBi-Directional Bus I/O Control Signal Definition Output OperationsMode 2 Control Word Mode 2 Bi-directional TimingMode 2 Combinations Mode 2 and Mode 0 OutputSource Current Capability on Port B and Port C Special Mode Combination ConsiderationsMode Definition Summary Table Reading Port C StatusKeyboard and Display Interface ApplicationsPrinter Interface Keyboard and Terminal Address InterfacePCO ~.LEFT/RIGHTSilicon Gate MOS Input High Voltage Val Output Low Voltage IOl = 1.6mA Characteristics TA = oc to 70C Vee = +5V ±5% vss = OVVil Input Low Voltage Time From STB = 0 To IBFMode 0 Basic Input Mode 1 Strobed Input Mode 2 Bi-directional Page Programmable Communication Interface ReadlWrite Control logic Reset ResetGeneral ClK ClockTxE Transmitter Empty Modem ControlDSR Data Set Ready DTR Data Termin·al ReadyRxRDY Receiver Ready Receiver BufferReceiver Control RxC Receiver ClockDetailed Operation Description Mode InstructionCommand Instruction ProgrammingAsynchronous Mode Receive Mode Instruction DefinitionAsynchronous Mode Transmission Data C~~RACTERMode Instruction Format, Synchronous Mode Synchronous Mode TransmissionSynchronous Mode Receive Synchronous Mode, Transmission FormatStatus Read Definition Command Instruction DefinitionCommand Instruction Format Status Read FormatSynchronous Interface to Terminal or Peripheral Device Asynchronous Serial Interface to CRT Terminal, DC-9600 BaudAsynchronous Interface to Telephone Lines Synchronous Interface to Telephone LinesIOL CapacitanceIcc TA = oc to 70C VCC = 5.0V ±5% Vss = OV Symbol Parameter Typ~AST BIT ,----1 RxDSRX ~4IlI RXD~Peripherals Page High Speed 1 OUT of 8 Binary Decoder System Enable GateDecoder Chip Select Decoder Using a very similar circuit to the I/O port decoder, an arPort Decoder 24K Memory InterfaceJJ,.--+-I----.....1 Logic Element Example\lJ IllSymbol VOL VOH Characteristics TA = OOC to +75C, Vee = 5.0V ±5%Typical Characteristics 8205Address or Enable to Output Delay VS. Ambient Temperature Switching Characteristics Conditions of Test Test LoadAddress or Enable to Output Delay VS. Load Capacitance Test Waveforms~ ~ PIN Configuration~ R Interrupt Method Interrupts in Microcomputer SystemsPolled Method Priority Encoder Current Status RegisterElR, ETlG, ENGl Control SignalsINTE, elK AO, A1, A2Level Controller Basic OperationI I Level ControllerCascading Los Operating CharacteristicsSymbol Parameter Limits Unit Conditions Min Typ.£1 Absolute Maximum RatingsCharacteristics and Waveforms TA = oc to +70C, vcc = +5V ±5% Schottky Bipolar +-......---- n cs 8216 8226Bi-Directional Driver Control Gating OlEN, CSLarge microcomputer systems it is often necessary to pro Applications of 8216/8226Memory and 1/0 Interface to a Bi-directional Bus Input Load Current All Other Inputs VF =0.45 IcC Power Supply Current 120Input Load Current OlEN, CS VF =0.45 Input Leakage Current OlEN, CS VR =5.25VWaveforms OUTPage 8253 8257 8259 Page Programmable Interval Timer It uses nMOS technology ~Jmodesof operation areSystem Interface Block DiagramPreliminary Functional Description System InterfaceProgrammable DMA Controller System Application System InterfaceDack 2 CS-------It LJJ Peripheral Coming Soon CPU GroupROMs RAMs IntelIt-j ~~~1735~ Lead Plastic Dual IN-LINE Package P \.--.J.. ~~~l·34o~ Lead CerDIP Dual IN-LINE Package DSales and Marketing Offices Distributors Page Page Page Page Page Page Instruction SET Instruction SET Summary of Processor Instructions By Alphabetical OrderMicrocomputer System Users Registration Card Intel Corporation Microcomputer Systems Bowers Avenue Santa Clara, CAInter
Related manuals
Manual 96 pages 34.66 Kb Manual 36 pages 44.12 Kb Manual 160 pages 43.4 Kb

8080 specifications

The Intel 8085 and 8080 microprocessors were groundbreaking innovations in the world of computing, paving the way for future microprocessor development and personal computing.

The Intel 8080, introduced in 1974, was an 8-bit microprocessor that played a fundamental role in the early days of personal computing. With a 16-bit address bus, it had the capability to address 64 KB of memory. Running at clock speeds of 2 MHz, the 8080 was notable for its instruction set, which included 78 instructions and 246 opcodes. It supported a range of addressing modes including direct, indirect, and register addressing. The 8080 was compatible with a variety of peripherals and played a crucial role in the development of many early computers.

The microprocessor's architecture was based on a simple and efficient design, making it accessible for hobbyists and engineers alike. It included an 8-bit accumulator, which allowed for data manipulation and storage during processing. Additionally, the 8080 featured registers like the program counter and stack pointer, which facilitated program flow control and data management. Its ability to handle interrupts also made it suitable for multitasking applications.

The Intel 8085, introduced in 1976, was an enhancement of the 8080 microprocessor. It maintained a similar architecture but included several key improvements. Notably, the 8085 had a built-in clock oscillator, simplifying system design by eliminating the need for external clock circuitry. It also featured a 5-bit control signal for status line management, which allowed for more flexible interfacing with peripheral devices. The 8085 was capable of running at speeds of up to 3 MHz and had an extended instruction set with 74 instructions.

One of the standout features of the 8085 was its support for 5 extra instructions for stack manipulation and I/O operations, which optimized the programming process. Additionally, it supported serial communication, making it suitable for interfacing with external devices. Its 16-bit address bus retained the 64 KB memory addressing capability of its predecessor.

Both the 8080 and 8085 microprocessors laid the groundwork for more advanced microprocessors in the years that followed. They demonstrated the potential of integrated circuits in computing and influenced the design and architecture of subsequent Intel microprocessors. Their legacy endures in the way they revolutionized computing, making technology accessible to a broader audience, and their influence is still felt in the design and architecture of modern microprocessors today.