Cypress CY7C1514KV18, CY7C1510KV18, CY7C1512KV18 manual Parameter Min Max Output Times, PLL Timing

Page 24

CY7C1510KV18, CY7C1525KV18

CY7C1512KV18, CY7C1514KV18

Switching Characteristics (continued)

Over the Operating Range [20, 21]

Cypress

Consortium

 

 

 

 

 

Description

333 MHz

300 MHz

250 MHz

200 MHz

167 MHz

Unit

Parameter

Parameter

 

 

 

 

 

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output Times

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCO

tCHQV

C/C

Clock Rise (or K/K in single

0.45

0.45

0.45

0.45

0.50

ns

 

 

 

 

clock mode) to Data Valid

 

 

 

 

 

 

 

 

 

 

 

tDOH

tCHQX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–0.45

–0.45

–0.45

–0.45

–0.50

ns

Data Output Hold after Output C/C

 

 

 

 

 

Clock Rise (Active to Active)

 

 

 

 

 

 

 

 

 

 

 

tCCQO

tCHCQV

 

 

Clock Rise to Echo Clock Valid

0.45

0.45

0.45

0.45

0.50

ns

C/C

tCQOH

tCHCQX

 

 

 

 

 

 

 

 

 

 

 

 

Clock

–0.45

–0.45

–0.45

–0.45

–0.50

ns

Echo Clock Hold after C/C

 

 

 

 

Rise

 

 

 

 

 

 

 

 

 

 

 

tCQD

tCQHQV

Echo Clock High to Data Valid

 

0.25

 

0.27

0.30

0.35

0.40

ns

tCQDOH

tCQHQX

Echo Clock High to Data Invalid

–0.25

–0.27

–0.30

–0.35

–0.40

ns

tCQH

tCQHCQL

 

 

 

 

 

 

 

 

 

HIGH [23]

1.25

1.40

1.75

2.25

2.75

ns

Output Clock (CQ/CQ)

tCQHCQH

 

tCQHCQH

 

CQ Clock Rise to

 

 

Clock Rise

1.25

1.40

1.75

2.25

2.75

ns

 

 

CQ

 

 

 

 

(rising edge to rising edge) [23]

 

 

 

 

 

 

 

 

 

 

 

tCHZ

tCHQZ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clock (C/C)

Rise to High-Z

0.45

0.45

0.45

0.45

0.50

ns

 

 

 

 

(Active to High-Z) [24, 25]

 

 

 

 

 

 

 

 

 

 

 

tCLZ

tCHQX1

 

 

 

 

 

Rise to Low-Z [24, 25]

 

 

 

 

 

 

 

 

 

 

 

Clock (C/C)

–0.45

–0.45

–0.45

–0.45

–0.50

ns

PLL Timing

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tKC Var

tKC Var

Clock Phase Jitter

0.20

0.20

0.20

0.20

0.20

ns

tKC lock

tKC lock

PLL Lock Time (K, C)

20

20

20

20

20

μs

tKC Reset

tKC Reset

K Static to PLL Reset

30

 

30

 

30

 

30

 

30

 

ns

Notes

23.These parameters are extrapolated from the input timing parameters (tCYC/2 - 250 ps, where 250 ps is the internal jitter). These parameters are only guaranteed by design and are not tested in production.

24.tCHZ, tCLZ, are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads and Waveforms. Transition is measured ± 100 mV from steady state voltage.

25.At any voltage and temperature tCHZ is less than tCLZ and tCHZ less than tCO.

Document Number: 001-00436 Rev. *E

Page 24 of 30

[+] Feedback

Image 24
Contents Features ConfigurationsFunctional Description Cypress Semiconductor Corporation 198 Champion CourtLogic Block Diagram CY7C1510KV18 Logic Block Diagram CY7C1525KV18Doff Logic Block Diagram CY7C1512KV18 Logic Block Diagram CY7C1514KV18Pin Configuration Ball Fbga 13 x 15 x 1.4 mm PinoutCY7C1510KV18 8M x CY7C1525KV18 8M xCY7C1512KV18 4M x WPS BWSCY7C1514KV18 2M x Pin Definitions Pin Name Pin DescriptionPower Supply Inputs to the Core of the Device Power Supply Inputs for the Outputs of the DeviceReferenced with Respect to TDO for JtagFunctional Overview Application Example Echo ClocksSram #1 Truth Table Write Cycle DescriptionsOperation CommentsWrite cycle description table for CY7C1525KV18 follow Write cycle description table for CY7C1514KV18 followDevice Into the device. D359 remains unalteredIeee 1149.1 Serial Boundary Scan Jtag Idcode TAP Controller State Diagram State diagram for the TAP controller followsTAP Controller Block Diagram TAP Electrical CharacteristicsTAP AC Switching Characteristics TAP Timing and Test ConditionsIdentification Register Definitions Scan Register SizesInstruction Codes Register Name Bit SizeBoundary Scan Order Bit # Bump IDPower Up Sequence in QDR-II Sram Power Up SequencePLL Constraints VDD/ Vddq DoffElectrical Characteristics DC Electrical CharacteristicsMaximum Ratings Operating RangeAC Electrical Characteristics Input High Voltage Vref +Input LOW Voltage Vref Document Number 001-00436 Rev. *E Capacitance Thermal ResistanceParameter Description Test Conditions Max Unit Parameter Description Test Conditions Fbga UnitSwitching Characteristics Parameter Min MaxHigh LOWParameter Min Max Output Times PLL TimingSwitching Waveforms Read/Write/Deselect Sequence 26, 27Ordering Information 250 167 Package Diagram Ball Fbga 13 x 15 x 1.4 mmSales, Solutions, and Legal Information Worldwide Sales and Design Support Products PSoC SolutionsDocument History

CY7C1510KV18, CY7C1514KV18, CY7C1512KV18, CY7C1525KV18 specifications

Cypress Semiconductor, a leading player in the memory solutions market, has developed a range of high-performance memory components, notably the CY7C1525KV18, CY7C1512KV18, CY7C1514KV18, and CY7C1510KV18. These devices are part of the company's advanced SRAM family and are noteworthy for their speed, efficiency, and flexibility in various applications.

The CY7C1525KV18 is a 2Mb asynchronous SRAM that boasts low latency and high-speed performance, making it ideal for applications that require fast data access and processing. It features a 1.8V operation, which significantly contributes to its power efficiency, an essential factor in today's energy-conscious designs. The architecture of the CY7C1525KV18 employs a dual-port configuration, enabling simultaneous read and write operations, which enhances the system performance in multi-threaded environments.

Similar in design but tailored for different capacities, the CY7C1512KV18 and CY7C1514KV18 deliver 1.5Mb and 1Mb memory density, respectively. Both chips are built with advanced CMOS technology, ensuring low power consumption and high-speed access times that reach up to 66 MHz. Such speed allows them to support high-performance applications, including networking equipment, telecom systems, and automotive electronics.

The CY7C1510KV18, meanwhile, offers a lower memory capacity at 512Kb but retains the key performance traits of its higher-capacity counterparts. It is particularly well-suited for applications where space is at a premium yet where high-speed data processing is still crucial.

All four SRAM devices are characterized by their fast access times, which can be as low as 10 ns, making them highly effective in environments that require real-time data handling. Moreover, their low standby and active power consumption aligns with the growing demand for energy-efficient solutions in modern electronics.

Additionally, these products come with a variety of packaging options to fit diverse application requirements, enhancing their versatility across industrial, automotive, and consumer electronics sectors. The combination of speed, efficiency, and flexible configurations renders the Cypress CY7C1525KV18, CY7C1512KV18, CY7C1514KV18, and CY7C1510KV18 an excellent choice for engineers seeking reliable high-performance memory solutions.