Sony 486DX, DX4, AR-B1474 manual Advanced Cmos Setup

Page 55

AR-B1474 User¡¦s Guide

6.3 ADVANCED CMOS SETUP

The <Advanced CMOS SETUP> option consists of configuration entries that allow you to improve your system performance, or let you set up some system features according to your preference.

System BootUp Sequence

The option determines where the system looks first for an operating system.

System BootUp Num-Lock

This item is used to activate the Num Lock function upon system boot. If the setting is on, after a boot, the Num Lock light is lit, and user can use the number key.

Floppy Drive Seek At Boot

If the <Floppy Drive Seek> item is setting Enabled, the BIOS will seek the floppy <A> drive one time upon bootup.

System BootUp CPU Speed

The option set the speed of the CPU at system boot time.

Typematic Rate (Chars/Sec)

Typematic Rate sets the rate at which characters on the screen repeat when a key is pressed and held down.

Above 1MB Memory Test

When this option is enabled, the BIOS memory test will be performed on all system memory. When this option is disabled, the memory test will be done only for the first 1MB of system memory.

Memory Test Tick Sound

The option enables or disabled the ticking sound during the memory test.

Password Checking Option

This option enables password checking every time the computer is powered on or every time the BIOS Setup is executed. If Always is chosen, a user password prompt appears every time the computer is turned on. If Setup is chosen, the password prompt appears if the BIOS executed.

Hard Disk Type 47 RAM Area

Specify in this option if the top 1KB of the system programming area beginning at 639K or 0:300 in the system BIOS area in low memory will be used to store hard disk information.

Wait for ‘ F1’ If Error

BIOS POST error messages are followed by:

Press <F1> to continue

If this option is set to Disabled, the AMIBIOS does not wait for you to press the <F1> key after an error message.

Hit ‘ DEL’ Message Display

Set this option to Disabled to prevent the message as follows:

Hit ‘DEL’ if you want to run setup

It will prevent the message from appearing on the first BIOS screen when the computer boots.

6-3

Image 55
Contents Industrial Grade 486DX/DX2/DX4 CPU Card Page Table of Contents SSD Types Supported & Index Bios ConsoleSpecifications Placement & Dimensions Memory Banks & Programming RS-485Preface Organization Static Electricity PrecautionsIntroduction OverviewPacking List FeaturesDMA Controller System ControllerDMA Controller Keyboard ControllerInterrupt Controller Interrupt ControllerHex Range Device 1 I/O Port Address MapI/O Port Address Map Real-Time Clock & Non-Volatile RAM TimerReal-Time Clock and Non-Volatile RAM Address DescriptionISA Bus Pin Assignment ISA Bus Pin AssignmentName Description ISA Bus Signal DescriptionDlab Serial PortReceiver Buffer Register RBR Transmitter Holding Register THRModem Control Register MCR Interrupt Enable Register IERInterrupt Identification Register IIR Line Control Register LCRRegister Address Parallel PortModem Status Register MSR Divisor Latch LS, MSPrinter Status Buffer Data SwapperPrinter Control Latch & Printer Control Swapper Overview Setting UP the SystemRS-485 Adapter Select JP3 & JP11 System SettingRS-232 Connector DB1 & DB2 Serial PortPower Connector J5 Hard Disk IDE Connector CN1HDD Pin Assignment Parallel Port Connector CN3 FDD Port Connector CN2CN3 Pin PC/104 Connector Bus a & B CN6 6 PC/104 ConnectorPin PC/104 Connector Bus C & D CN4 IRQ 3-7, 9-12, 14 PC/104 ISA Bus Signal DescriptionAMD 4X CPU 5x86 Select JP15 CPU SettingAMD DX2-80 CPU Select JP1 CPU Voltage Select JP2CPU Clock Select JP6 & JP9 CPU Clock SettingSIMM1 Memory SettingDram Configuration Cache RAM Size Select JP8LED Header J1, J2 & J4 Keyboard ConnectorCRT Display Type Select JP13 Reset Header J7Battery Setting External Speaker Header J3Page Installation PGM1474.EXE Utility DisketteWP1474.EXE WD1474.EXEBU1474.EXE Help to PGF File Display Error in PGF FileHardware Write Protect Enable the Software Write ProtectDisable the Software Write Protect Write Protect FunctionTime Factor Time-Out Period Seconds Watchdog TimerWatchdog Timer Setting Time-Out SettingWatchdog Timer Trigger Watchdog Timer EnabledWatchdog Timer Disabled Page Solid State Disk Switch SettingDEVICE=C\DOS\EMM386.EXE X=C800-CFFF Overview2 I/O Port Address Select SW1-1 & SW1-2 SSD Firmware Address Select SW1-3 & SW1-4Simulate 2 Disk Drive SSD Drive Number SW1-5 & SW1-6Flash Eprom Sram Disk Drive Name Arrangement ROM Type Select SW1-7 & SW1-8SSD Bios Select JP7 Jumper SettingUV Eprom 27Cxxx SSD Memory Type Setting M1 ~ M3 & JP5ROM Disk Installation Switch and Jumper SettingSoftware Programming UV Eprom 27CXXX Switch SettingLarge Page 5V Flash Disk 5V Large Flash 29FXXX Switch SettingSmall Page 5V Flash ROM Disk 5V Flash 29CXXX & 28EEXXX Switch SettingTyping DOS Command Using Tool ProgramRAM Disk Jumper SettingCombination of ROM and RAM Disk Installation D.O.CHardware Setting SSD Bios Setting JP7O.C. Setting SW1-8 Software SettingPage Bios Setup Overview Bios ConsoleHard Disk Setup Standard Cmos SetupDate & Time Setup Floppy SetupAdvanced Cmos Setup Shadow IDE Block Mode TransferIDE LBA Mode Internal Cache MemoryAdvanced Chipset Setup Power Management Auto Configuration with Fail Safe Setting Setting PasswordPassword Checking Auto Configuration with Optimal SettingSave Settings and Exit Bios ExitExit Without Saving PCB SpecificationsBios CPUPage Placement Placement & DimensionsDimensions Socket Using Memory BankMemory Banks & Programming RS-485 CS1 CS0Initialize COM port Programming RS-485Send out one character Transmit Send out one character to COM1 Receive dataPage SSD Types Supported SSD Types Supported & Index10-2 Name Function Index

DX4, AR-B1474, 486DX specifications

The Sony 486DX, AR-B1474, and DX4 are notable examples of advanced computing technologies from the early to mid-1990s, a time when personal computers were rapidly evolving to meet increasing user demands. These systems played a pivotal role in shaping the landscape of modern computing.

The Sony 486DX is built around the popular Intel 80486 microprocessor, which was a significant step up from its predecessor, the 386. The 486DX featured a 32-bit architecture and introduced integrated cache memory, which greatly enhanced data processing speeds and overall system performance. Operating at clock speeds typically ranging from 25 to 100 MHz, the 486DX models provided a solid foundation for running more sophisticated software applications and advanced games of the era.

Accompanying the 486DX was the AR-B1474 motherboard, designed to maximize the potential of the 486 architecture. This motherboard featured support for up to 512 KB of level 2 cache memory, further boosting performance for data-heavy tasks. The AR-B1474 also included extensive connectivity options, with ISA slots for legacy devices, as well as support for EISA, making it compatible with a wide range of hardware peripherals. This versatility made the AR-B1474 a popular choice among builders of custom desktop PCs during its time.

The DX4, another significant milestone, built upon the 486 architecture by introducing a clock-doubling technique. By effectively allowing the processor to perform operations at up to three times its base clock speed (typically 75 or 100 MHz), the DX4 could handle even more demanding applications, thereby providing users with significant performance improvements without requiring a complete overhaul of their systems.

Both the 486DX and DX4 processors facilitated advancements in multimedia capabilities, with improved graphics rendering and audio performance that supported CD-ROMs and early gaming technologies. This made them particularly appealing to consumers looking for a versatile machine for both work and entertainment.

Overall, the combination of the Sony 486DX, AR-B1474 motherboard, and DX4 processor exemplifies a significant chapter in computing history, showcasing how hardware advancements seamlessly integrated with user needs for performance and flexibility. As these technologies laid the groundwork for future innovations, they remain noteworthy for their contributions to the evolution of personal computing.