Sony AR-B1474, DX4 Setting Password, Password Checking, Auto Configuration with Optimal Setting

Page 59

AR-B1474 User¡¦s Guide

6.6 AUTO-DETECT HARD DISKS

This option detects the parameters of an IDE hard disk drive, and automatically enters them into the Standard CMOS Setup screen.

6.7 PASSWORD SETTING

This BIOS Setup has an optional password feature. The system can be configured so that all users must enter a password every time the system boots or when BIOS Setup is executed. User can set either a Supervisor password or a User password.

6.7.1 Setting Password

Select the appropriate password icon (Supervisor or User) from the Security section of the BIOS Setup main menu. Enter the password and press [Enter]. The screen does not display the characters entered. After the new password is entered, retype the new password as prompted and press [Enter].

If the password confirmation is incorrect, an error message appears. If the new password is entered without error, press [Esc] to return to the BIOS Main Menu. The password is stored in CMOS RAM after BIOS completes. The next time the system boots, you are prompted for the password function is present and is enabled.

6.7.2 Password Checking

The password check option is enabled in Advanced Setup by choosing either Always (the password prompt appears every time the system is powered on) or Setup (the password prompt appears only when BIOS is run). The password is stored in CMOS RAM. User can enter a password by typing on the keyboard. As user select Supervisor or User. The BIOS prompts for a password, user must set the Supervisor password before user can set the User password. Enter 1-6 character as password. The password does not appear on the screen when typed. Make sure you write it down.

6.8 LOAD DEFAULT SETTING

In this section permit user to select a group of setting for all BIOS Setup options. Not only can you use these items to quickly set system configuration parameters, you can choose a group of settings that have a better chance of working when the system is having configuration related problems.

6.8.1 Auto Configuration with Optimal Setting

User can load the optimal default settings for the BIOS. The Optimal default settings are best-case values that should optimize system performance. If CMOS RAM is corrupted, the optimal settings are loaded automatically.

Load high performance settings (Y/N) ?

6.8.2 Auto Configuration with Fail Safe Setting

User can load the Fail-Safe BIOS Setup option settings by selecting the Fail-Safe item from the Default section of the BIOS Setup main menu.

The Fail-Safe settings provide far from optimal system performance, but are the most stable settings. Use this option as a diagnostic aid if the system is behaving erratically.

Load failsafe settings (Y/N) ?

6-7

Image 59
Contents Industrial Grade 486DX/DX2/DX4 CPU Card Page Table of Contents SSD Types Supported & Index Bios ConsoleSpecifications Placement & Dimensions Memory Banks & Programming RS-485Preface Organization Static Electricity PrecautionsIntroduction OverviewPacking List FeaturesDMA Controller System ControllerDMA Controller Keyboard ControllerInterrupt Controller Interrupt ControllerI/O Port Address Map 1 I/O Port Address MapHex Range Device Real-Time Clock & Non-Volatile RAM TimerReal-Time Clock and Non-Volatile RAM Address DescriptionISA Bus Pin Assignment ISA Bus Pin AssignmentName Description ISA Bus Signal DescriptionDlab Serial PortReceiver Buffer Register RBR Transmitter Holding Register THRModem Control Register MCR Interrupt Enable Register IERInterrupt Identification Register IIR Line Control Register LCRRegister Address Parallel PortModem Status Register MSR Divisor Latch LS, MSPrinter Control Latch & Printer Control Swapper Data SwapperPrinter Status Buffer Overview Setting UP the SystemRS-485 Adapter Select JP3 & JP11 System SettingRS-232 Connector DB1 & DB2 Serial PortHDD Pin Assignment Hard Disk IDE Connector CN1Power Connector J5 CN3 FDD Port Connector CN2Parallel Port Connector CN3 Pin PC/104 Connector Bus C & D CN4 6 PC/104 ConnectorPin PC/104 Connector Bus a & B CN6 IRQ 3-7, 9-12, 14 PC/104 ISA Bus Signal DescriptionAMD 4X CPU 5x86 Select JP15 CPU SettingAMD DX2-80 CPU Select JP1 CPU Voltage Select JP2CPU Clock Select JP6 & JP9 CPU Clock SettingSIMM1 Memory SettingDram Configuration Cache RAM Size Select JP8LED Header J1, J2 & J4 Keyboard ConnectorCRT Display Type Select JP13 Reset Header J7Battery Setting External Speaker Header J3Page Installation PGM1474.EXE Utility DisketteBU1474.EXE WD1474.EXEWP1474.EXE Help to PGF File Display Error in PGF FileHardware Write Protect Enable the Software Write ProtectDisable the Software Write Protect Write Protect FunctionTime Factor Time-Out Period Seconds Watchdog TimerWatchdog Timer Setting Time-Out SettingWatchdog Timer Disabled Watchdog Timer EnabledWatchdog Timer Trigger Page Solid State Disk Switch SettingDEVICE=C\DOS\EMM386.EXE X=C800-CFFF Overview2 I/O Port Address Select SW1-1 & SW1-2 SSD Firmware Address Select SW1-3 & SW1-4Flash Eprom Sram SSD Drive Number SW1-5 & SW1-6Simulate 2 Disk Drive Disk Drive Name Arrangement ROM Type Select SW1-7 & SW1-8SSD Bios Select JP7 Jumper SettingUV Eprom 27Cxxx SSD Memory Type Setting M1 ~ M3 & JP5ROM Disk Installation Switch and Jumper SettingSoftware Programming UV Eprom 27CXXX Switch SettingLarge Page 5V Flash Disk 5V Large Flash 29FXXX Switch SettingSmall Page 5V Flash ROM Disk 5V Flash 29CXXX & 28EEXXX Switch SettingTyping DOS Command Using Tool ProgramRAM Disk Jumper SettingCombination of ROM and RAM Disk Installation D.O.CHardware Setting SSD Bios Setting JP7O.C. Setting SW1-8 Software SettingPage Bios Setup Overview Bios ConsoleHard Disk Setup Standard Cmos SetupDate & Time Setup Floppy SetupAdvanced Cmos Setup Shadow IDE Block Mode TransferIDE LBA Mode Internal Cache MemoryAdvanced Chipset Setup Power Management Auto Configuration with Fail Safe Setting Setting PasswordPassword Checking Auto Configuration with Optimal SettingExit Without Saving Bios ExitSave Settings and Exit PCB SpecificationsBios CPUPage Placement Placement & DimensionsDimensions Socket Using Memory BankMemory Banks & Programming RS-485 CS1 CS0Send out one character Transmit Programming RS-485Initialize COM port Send out one character to COM1 Receive dataPage SSD Types Supported SSD Types Supported & Index10-2 Name Function Index

DX4, AR-B1474, 486DX specifications

The Sony 486DX, AR-B1474, and DX4 are notable examples of advanced computing technologies from the early to mid-1990s, a time when personal computers were rapidly evolving to meet increasing user demands. These systems played a pivotal role in shaping the landscape of modern computing.

The Sony 486DX is built around the popular Intel 80486 microprocessor, which was a significant step up from its predecessor, the 386. The 486DX featured a 32-bit architecture and introduced integrated cache memory, which greatly enhanced data processing speeds and overall system performance. Operating at clock speeds typically ranging from 25 to 100 MHz, the 486DX models provided a solid foundation for running more sophisticated software applications and advanced games of the era.

Accompanying the 486DX was the AR-B1474 motherboard, designed to maximize the potential of the 486 architecture. This motherboard featured support for up to 512 KB of level 2 cache memory, further boosting performance for data-heavy tasks. The AR-B1474 also included extensive connectivity options, with ISA slots for legacy devices, as well as support for EISA, making it compatible with a wide range of hardware peripherals. This versatility made the AR-B1474 a popular choice among builders of custom desktop PCs during its time.

The DX4, another significant milestone, built upon the 486 architecture by introducing a clock-doubling technique. By effectively allowing the processor to perform operations at up to three times its base clock speed (typically 75 or 100 MHz), the DX4 could handle even more demanding applications, thereby providing users with significant performance improvements without requiring a complete overhaul of their systems.

Both the 486DX and DX4 processors facilitated advancements in multimedia capabilities, with improved graphics rendering and audio performance that supported CD-ROMs and early gaming technologies. This made them particularly appealing to consumers looking for a versatile machine for both work and entertainment.

Overall, the combination of the Sony 486DX, AR-B1474 motherboard, and DX4 processor exemplifies a significant chapter in computing history, showcasing how hardware advancements seamlessly integrated with user needs for performance and flexibility. As these technologies laid the groundwork for future innovations, they remain noteworthy for their contributions to the evolution of personal computing.