Sony 486DX, DX4, AR-B1474 manual RAM Disk, Jumper Setting

Page 49

AR-B1474 User¡¦s Guide

CAUTION: It is not recommended that the user formatted the disk and copy files to the FLASH disk very often. Since the FLASH EPROM’ s write cycle life time is about 10,000 or 100,000 times, writing data to the FLASH too often will reduce the life time of the FLASH EPROM chips, especially the FLASH EPROM chip in the MEM1 socket.

5.4.4 RAM Disk

(1) Jumper Setting

Step 1: Use jumper block to set the memory type as ROM (FLASH).

Step 2: Select the proper I/O base port, firmware address, disk drive number on SW1.

Step 3: Insert programmed SRAM chips into sockets starting at MEM1.

NOTE: If you use the SRAM, please skip the SW1-7 & SW1-8 setting.

A B C

1

2

3 M1, M2 & M4

JP5

1 2 3

SRAM

Figure 5-11 SRAM Jumper Setting

(2) Software Programming

It is very easy to use the RAM disk. The RAM disk operates just like a normal floppy disk. A newly installed RAM disk needs to be formatted before files can be copied to it. Use the DOS command [FORMAT] to format the RAM disk.

Step 1: Use jumper block to select the memory type as SRAM refer.

Step 2: Select the proper I/O base port, firmware address and disk drive number on SW1.

Step 3: Insert SRAM chips into sockets starting from MEM1

Step 4: Turn on power and boot DOS from hard disk drive or floppy disk drive.

Step 5: Use the DOS command [FORMAT] to format the RAM disk. If you are installing SRAM for the first time.

To format the RAM disk and copy DOS system files onto the RAM disk. C:\>FORMAT [RAM disk letter] /S /U

To format the RAM disk without copying DOS system files into the RAM disk.

C:\>FORMAT [RAM disk letter] /U

Step 6: Use the DOS command [COPY] to copy files onto the RAM disk. For example, if you want to copy file <EDIT.EXE> to the RAM disk from drive C: and the RAM disk is assigned as drive A:.

COPY C:EDIT.EXE A:

NOTE: In addition, you can use any other DOS command to operate the RAM disk.

5-11

Image 49
Contents Industrial Grade 486DX/DX2/DX4 CPU Card Page Table of Contents Specifications Placement & Dimensions Bios ConsoleMemory Banks & Programming RS-485 SSD Types Supported & IndexPreface Organization Static Electricity PrecautionsIntroduction OverviewPacking List FeaturesDMA Controller System ControllerKeyboard Controller DMA ControllerInterrupt Controller Interrupt ControllerHex Range Device 1 I/O Port Address MapI/O Port Address Map Real-Time Clock and Non-Volatile RAM TimerAddress Description Real-Time Clock & Non-Volatile RAMISA Bus Pin Assignment ISA Bus Pin AssignmentName Description ISA Bus Signal DescriptionReceiver Buffer Register RBR Serial PortTransmitter Holding Register THR DlabInterrupt Identification Register IIR Interrupt Enable Register IERLine Control Register LCR Modem Control Register MCRModem Status Register MSR Parallel PortDivisor Latch LS, MS Register AddressPrinter Status Buffer Data SwapperPrinter Control Latch & Printer Control Swapper Overview Setting UP the SystemRS-232 Connector DB1 & DB2 System SettingSerial Port RS-485 Adapter Select JP3 & JP11Power Connector J5 Hard Disk IDE Connector CN1HDD Pin Assignment Parallel Port Connector CN3 FDD Port Connector CN2CN3 Pin PC/104 Connector Bus a & B CN6 6 PC/104 ConnectorPin PC/104 Connector Bus C & D CN4 IRQ 3-7, 9-12, 14 PC/104 ISA Bus Signal DescriptionAMD DX2-80 CPU Select JP1 CPU SettingCPU Voltage Select JP2 AMD 4X CPU 5x86 Select JP15CPU Clock Select JP6 & JP9 CPU Clock SettingDram Configuration Memory SettingCache RAM Size Select JP8 SIMM1LED Header J1, J2 & J4 Keyboard ConnectorBattery Setting Reset Header J7External Speaker Header J3 CRT Display Type Select JP13Page Installation PGM1474.EXE Utility DisketteWP1474.EXE WD1474.EXEBU1474.EXE Help to PGF File Display Error in PGF FileDisable the Software Write Protect Enable the Software Write ProtectWrite Protect Function Hardware Write ProtectWatchdog Timer Setting Watchdog TimerTime-Out Setting Time Factor Time-Out Period SecondsWatchdog Timer Trigger Watchdog Timer EnabledWatchdog Timer Disabled Page Solid State Disk Switch Setting2 I/O Port Address Select SW1-1 & SW1-2 OverviewSSD Firmware Address Select SW1-3 & SW1-4 DEVICE=C\DOS\EMM386.EXE X=C800-CFFFSimulate 2 Disk Drive SSD Drive Number SW1-5 & SW1-6Flash Eprom Sram Disk Drive Name Arrangement ROM Type Select SW1-7 & SW1-8SSD Bios Select JP7 Jumper SettingROM Disk Installation SSD Memory Type Setting M1 ~ M3 & JP5Switch and Jumper Setting UV Eprom 27CxxxSoftware Programming UV Eprom 27CXXX Switch SettingLarge Page 5V Flash Disk 5V Large Flash 29FXXX Switch SettingSmall Page 5V Flash ROM Disk 5V Flash 29CXXX & 28EEXXX Switch SettingTyping DOS Command Using Tool ProgramRAM Disk Jumper SettingHardware Setting Installation D.O.CSSD Bios Setting JP7 Combination of ROM and RAM DiskO.C. Setting SW1-8 Software SettingPage Bios Setup Overview Bios ConsoleDate & Time Setup Standard Cmos SetupFloppy Setup Hard Disk SetupAdvanced Cmos Setup IDE LBA Mode IDE Block Mode TransferInternal Cache Memory ShadowAdvanced Chipset Setup Power Management Password Checking Setting PasswordAuto Configuration with Optimal Setting Auto Configuration with Fail Safe SettingSave Settings and Exit Bios ExitExit Without Saving Bios SpecificationsCPU PCBPage Placement Placement & DimensionsDimensions Memory Banks & Programming RS-485 Using Memory BankCS1 CS0 SocketInitialize COM port Programming RS-485Send out one character Transmit Send out one character to COM1 Receive dataPage SSD Types Supported SSD Types Supported & Index10-2 Name Function Index

DX4, AR-B1474, 486DX specifications

The Sony 486DX, AR-B1474, and DX4 are notable examples of advanced computing technologies from the early to mid-1990s, a time when personal computers were rapidly evolving to meet increasing user demands. These systems played a pivotal role in shaping the landscape of modern computing.

The Sony 486DX is built around the popular Intel 80486 microprocessor, which was a significant step up from its predecessor, the 386. The 486DX featured a 32-bit architecture and introduced integrated cache memory, which greatly enhanced data processing speeds and overall system performance. Operating at clock speeds typically ranging from 25 to 100 MHz, the 486DX models provided a solid foundation for running more sophisticated software applications and advanced games of the era.

Accompanying the 486DX was the AR-B1474 motherboard, designed to maximize the potential of the 486 architecture. This motherboard featured support for up to 512 KB of level 2 cache memory, further boosting performance for data-heavy tasks. The AR-B1474 also included extensive connectivity options, with ISA slots for legacy devices, as well as support for EISA, making it compatible with a wide range of hardware peripherals. This versatility made the AR-B1474 a popular choice among builders of custom desktop PCs during its time.

The DX4, another significant milestone, built upon the 486 architecture by introducing a clock-doubling technique. By effectively allowing the processor to perform operations at up to three times its base clock speed (typically 75 or 100 MHz), the DX4 could handle even more demanding applications, thereby providing users with significant performance improvements without requiring a complete overhaul of their systems.

Both the 486DX and DX4 processors facilitated advancements in multimedia capabilities, with improved graphics rendering and audio performance that supported CD-ROMs and early gaming technologies. This made them particularly appealing to consumers looking for a versatile machine for both work and entertainment.

Overall, the combination of the Sony 486DX, AR-B1474 motherboard, and DX4 processor exemplifies a significant chapter in computing history, showcasing how hardware advancements seamlessly integrated with user needs for performance and flexibility. As these technologies laid the groundwork for future innovations, they remain noteworthy for their contributions to the evolution of personal computing.