Sony 486DX, DX4, AR-B1474 manual Overview, Introduction

Page 7

AR-B1474 User¡¦s Guide

1. OVERVIEW

This chapter provides an overview of your system features and capabilities. The following topics are covered:

Introduction

Packing List

Features

1.1INTRODUCTION

The AR-B1474 is a half size industrial grade CPU card that has been designed to withstand continuous operation in harsh environments. The total on-board memory for the AR-B1474 can be configured from 1MB to 32MB by using all 72-pin type DRAM devices.

The 8 layers PCB CPU card is equipped with a IDE HDD interface, a floppy disk drive adapter, 1 parallel port, 2 serial ports, a watchdog timer and a solid state disk. Its dimensions are as compact as 122mm x 185mm. It’ s highly condensed features make it an ideal cost/performance solution for high-end commercial and industrial applications where CPU speed and mean time between failure is critical.

The AR-B1474 provides 2 bus interfaces, ISA bus and PC/104 compatible expansion bus. Based on the PC/104 expansion bus, you could easy install thousands of PC/104 module from hundreds venders around the world. You could also directly connect the power supply to the AR-B1474 on-board power connector in stand alone applications.

A watchdog timer, which has a software programmable time-out interval, is also provided on this CPU card. It ensures that the system will not hang-up if a program can not execute normally.

For diskless application, the AR-B1474 provides up to 3MB of bootable ROM, FLASH, or SRAM disk space by using 64K x 8 to 1M x 8 memory chips.

The AR-B1474 is implemented with M1429 and M1431 chipset incorporate a memory controller, parity generation and checking, two 8237 DMA controllers, two 8259 interrupt controllers, one 8254 timer/counter, an address buffer and a data buffer.

A super I/O chip (SMC37C669) is embedded in the AR-B1474 card. It combines functions of a floppy disk drive adapter, a hard disk drive (IDE) adapter, two serial (with 16C550 UART) adapters and 1 parallel adapter.

The I/O port configurations can be done by setting the BIOS setup program.

As an UART, the chip supports serial to parallel conversion on data characters received from a peripheral device or a MODEM , and parallel to serial conversion on data character received from the CPU. The UART includes a programmable baud rate generator, complete MODEM control capability and a processor interrupt system. As a parallel port, the SMC37C669 provides the user with a fully bi-directional parallel centronics-type printer interface.

This manual has been written to assist you in installing, configuring and running the AR-B1474 CPU card. Each section is intended to guide you through it’ s procedures clearly and concisely, allowing you to continue to the next chapters without any difficulty.

1-1

Image 7
Contents Industrial Grade 486DX/DX2/DX4 CPU Card Page Table of Contents SSD Types Supported & Index Bios ConsoleSpecifications Placement & Dimensions Memory Banks & Programming RS-485Preface Organization Static Electricity PrecautionsIntroduction OverviewPacking List FeaturesDMA Controller System ControllerDMA Controller Keyboard ControllerInterrupt Controller Interrupt ControllerHex Range Device 1 I/O Port Address MapI/O Port Address Map Real-Time Clock & Non-Volatile RAM TimerReal-Time Clock and Non-Volatile RAM Address DescriptionISA Bus Pin Assignment ISA Bus Pin AssignmentName Description ISA Bus Signal DescriptionDlab Serial PortReceiver Buffer Register RBR Transmitter Holding Register THRModem Control Register MCR Interrupt Enable Register IERInterrupt Identification Register IIR Line Control Register LCRRegister Address Parallel PortModem Status Register MSR Divisor Latch LS, MSPrinter Status Buffer Data SwapperPrinter Control Latch & Printer Control Swapper Overview Setting UP the SystemRS-485 Adapter Select JP3 & JP11 System SettingRS-232 Connector DB1 & DB2 Serial PortPower Connector J5 Hard Disk IDE Connector CN1HDD Pin Assignment Parallel Port Connector CN3 FDD Port Connector CN2CN3 Pin PC/104 Connector Bus a & B CN6 6 PC/104 ConnectorPin PC/104 Connector Bus C & D CN4 IRQ 3-7, 9-12, 14 PC/104 ISA Bus Signal DescriptionAMD 4X CPU 5x86 Select JP15 CPU SettingAMD DX2-80 CPU Select JP1 CPU Voltage Select JP2CPU Clock Select JP6 & JP9 CPU Clock SettingSIMM1 Memory SettingDram Configuration Cache RAM Size Select JP8LED Header J1, J2 & J4 Keyboard ConnectorCRT Display Type Select JP13 Reset Header J7Battery Setting External Speaker Header J3Page Installation PGM1474.EXE Utility DisketteWP1474.EXE WD1474.EXEBU1474.EXE Help to PGF File Display Error in PGF FileHardware Write Protect Enable the Software Write ProtectDisable the Software Write Protect Write Protect FunctionTime Factor Time-Out Period Seconds Watchdog TimerWatchdog Timer Setting Time-Out SettingWatchdog Timer Trigger Watchdog Timer EnabledWatchdog Timer Disabled Page Solid State Disk Switch SettingDEVICE=C\DOS\EMM386.EXE X=C800-CFFF Overview2 I/O Port Address Select SW1-1 & SW1-2 SSD Firmware Address Select SW1-3 & SW1-4Simulate 2 Disk Drive SSD Drive Number SW1-5 & SW1-6Flash Eprom Sram Disk Drive Name Arrangement ROM Type Select SW1-7 & SW1-8SSD Bios Select JP7 Jumper SettingUV Eprom 27Cxxx SSD Memory Type Setting M1 ~ M3 & JP5ROM Disk Installation Switch and Jumper SettingSoftware Programming UV Eprom 27CXXX Switch SettingLarge Page 5V Flash Disk 5V Large Flash 29FXXX Switch SettingSmall Page 5V Flash ROM Disk 5V Flash 29CXXX & 28EEXXX Switch SettingTyping DOS Command Using Tool ProgramRAM Disk Jumper SettingCombination of ROM and RAM Disk Installation D.O.CHardware Setting SSD Bios Setting JP7O.C. Setting SW1-8 Software SettingPage Bios Setup Overview Bios ConsoleHard Disk Setup Standard Cmos SetupDate & Time Setup Floppy SetupAdvanced Cmos Setup Shadow IDE Block Mode TransferIDE LBA Mode Internal Cache MemoryAdvanced Chipset Setup Power Management Auto Configuration with Fail Safe Setting Setting PasswordPassword Checking Auto Configuration with Optimal SettingSave Settings and Exit Bios ExitExit Without Saving PCB SpecificationsBios CPUPage Placement Placement & DimensionsDimensions Socket Using Memory BankMemory Banks & Programming RS-485 CS1 CS0Initialize COM port Programming RS-485Send out one character Transmit Send out one character to COM1 Receive dataPage SSD Types Supported SSD Types Supported & Index10-2 Name Function Index

DX4, AR-B1474, 486DX specifications

The Sony 486DX, AR-B1474, and DX4 are notable examples of advanced computing technologies from the early to mid-1990s, a time when personal computers were rapidly evolving to meet increasing user demands. These systems played a pivotal role in shaping the landscape of modern computing.

The Sony 486DX is built around the popular Intel 80486 microprocessor, which was a significant step up from its predecessor, the 386. The 486DX featured a 32-bit architecture and introduced integrated cache memory, which greatly enhanced data processing speeds and overall system performance. Operating at clock speeds typically ranging from 25 to 100 MHz, the 486DX models provided a solid foundation for running more sophisticated software applications and advanced games of the era.

Accompanying the 486DX was the AR-B1474 motherboard, designed to maximize the potential of the 486 architecture. This motherboard featured support for up to 512 KB of level 2 cache memory, further boosting performance for data-heavy tasks. The AR-B1474 also included extensive connectivity options, with ISA slots for legacy devices, as well as support for EISA, making it compatible with a wide range of hardware peripherals. This versatility made the AR-B1474 a popular choice among builders of custom desktop PCs during its time.

The DX4, another significant milestone, built upon the 486 architecture by introducing a clock-doubling technique. By effectively allowing the processor to perform operations at up to three times its base clock speed (typically 75 or 100 MHz), the DX4 could handle even more demanding applications, thereby providing users with significant performance improvements without requiring a complete overhaul of their systems.

Both the 486DX and DX4 processors facilitated advancements in multimedia capabilities, with improved graphics rendering and audio performance that supported CD-ROMs and early gaming technologies. This made them particularly appealing to consumers looking for a versatile machine for both work and entertainment.

Overall, the combination of the Sony 486DX, AR-B1474 motherboard, and DX4 processor exemplifies a significant chapter in computing history, showcasing how hardware advancements seamlessly integrated with user needs for performance and flexibility. As these technologies laid the groundwork for future innovations, they remain noteworthy for their contributions to the evolution of personal computing.