Agilent Technologies 6612C Measuring Output Pulses Agilent 66312A, 66332A Only, Current Detector

Page 28

3 - Programming the DC Source

Measuring Output Pulses (Agilent 66312A, 66332A Only)

Current Detector

Check that the current detector is set to ACDC when measuring current pulses or other waveforms with a frequency content greater than a few kilohertz.

SENSe:CURRent:DETect ACDC

Only select DC as the measurement detector if you are making only DC current measurements and you require a measurement offset better than 2mA on the High current measurement range. Note that this selection gives inaccurate results on current waveforms that have ac content.

SENSe:CURRent:DETect DC

Pulse Measurement Queries

The dc source has several measurement queries that return key parameters of pulsewaveforms as shown in Figure 3-4.

FETC:CURR:MAX?

FETC:VOLT:MAX?

FETC:CURR:HIGH?

FETC:VOLT:HIGH?

FETC:CURR:LOW?

FETC:VOLT:LOW?

DATA POINTS

FETC:CURR:MIN?

FETC:VOLT:MIN?

Figure 3-4. Measurement Commands Used to Return Pulse Data

To return the maximum or minimum value of a pulse waveform use the following commands. Note that the data points of the measurement sample may not coincide with the actual maximum or minimum point on the waveform.

FETCh:VOLTage:MAXimum? or

FETCh:VOLTage:MINimum?

FETCh:CURRent:MAXimum? or

FETCh:CURRent:MINimum?

The average value of the high level or low level of a pulse can also be measured. To return the average value of the high level, use:

FETCh:CURRent:HIGH? or

FETCh:VOLTage:HIGH?

To return the average value of the low level, use:

FETCh:CURRent:LOW? or

FETCh:VOLTage:LOW?

28

Image 28
Contents Programming Guide Safety Guidelines Printing HistoryTable of Contents Language Dictionary Internally Triggered MeasurementsOutput Commands Error Messages Scpi Conformance InformationCompatibility Language Example ProgramsAbout this Guide Documentation SummaryGpib References External ReferencesScpi References VXIplug&play Power Products Instrument Drivers Downloading and Installing the DriverSupported Applications System RequirementsAccessing Online Help Gpib Capabilities of the DC SourceRS-232 Capabilities of the DC Source Gpib AddressRS-232 Programming Example RS-232 Flow ControlBaud Rate RS-232 Troubleshooting Introduction to ScpiConventions Used in This Guide Boldface fontTypes of Scpi Commands Multiple Commands in a MessageIncluding Common Commands Using QueriesTypes of Scpi Messages Moving Among SubsystemsQuery Indicator Message UnitHeaders Message Unit SeparatorScpi Data Formats Numerical Data FormatsSuffixes and Multipliers Response Data TypesScpi Command Completion Using Device ClearPage Power-on Initialization IntroductionProgramming the Output Enabling the OutputOutput Voltage Output CurrentMaximum Voltage Maximum CurrentSetting the Voltage or Current Trigger Levels Triggering Output ChangesScpi Triggering Nomenclature Output Trigger System ModelInitiating the Output Trigger System Generating TriggersVoltage and Current Measurements Making MeasurementsDC Measurements RMS Measurements Agilent 66312A, 66332A Only Current RangesMeasurement Trigger System Model Internally Triggered MeasurementsSequence Form Alias SEQuence2 ACQuire Generating Measurement Triggers Agilent 66312A, 66332A Only BUSTrigger Commands Used to Measure Output Pulses Current Detector Measuring Output Pulses Agilent 66312A, 66332A OnlyPulse Measurement Queries Varying the Voltage or Current Sampling Rate Controlling Measurement SamplesMultiple Measurements Agilent 66312A, 66332A Only Pulse Measurement Example Agilent 66312A, 66332A only Pre-event and Post-event TriggeringOption Base Power-On Conditions Programming the Status RegistersOperation Status Group Standard Event Status Group Questionable Status GroupStatus Byte Register Determining the Cause of a Service Interrupt Servicing Operation Status and Questionable Status EventsMSS Bit RQS BitInhibit/Fault Indicator Monitoring Both Phases of a Status TransitionDiscrete Fault Indicator DFI Remote Inhibit RIUsing the Inhibit/Fault Port as a Digital I/O Bit WeightDFI Programming Example PinPage Subsystem Commands Language DictionarySubsystem Commands Syntax DFI ALCSubsystem Commands Syntax Common Commands Common Commands SyntaxProgramming Parameters Output Programming ParametersCalibration Commands CALibrateCURRentCALibrateCURRentNEGative CALibrateCURRentMEASureLOWRangeCALibratePASSword Command Syntax CALibrateSAVE Parameters None ExamplesCALibrateDATA CALibrateLEVelCALibrateSTATe CALibrateVOLTageCALibrateVOLTagePROTection Query Syntax CALibrateSTATe?Measurement Commands MEASureARRayCURRent? FETChARRayCURRent?MEASureARRayVOLTage? FETChARRayVOLTage? Query SyntaxMEASureCURRent? FETChCURRent? MEASureCURRentACDC? FETChCURRentACDC?MEASureCURRentHIGH? FETChCURRentHIGH? FETChCURRent? applies to Agilent 66312A, 66332A OnlyMEASureCURRentMAXimum? FETChCURRent MAXimum? MEASureCURRentLOW? FETChCURRentLOW?MEASureCURRentMINimum? FETChCURRentMINimum? MEASureVOLTage? FETChVOLTage? MEASureVOLTageACDC? FETChVOLTageACDC?MEASureVOLTageHIGH? FETChVOLTageHIGH? FETChVOLTage? applies to Agilent 66312A, 66332A OnlyMEASureVOLTageMAXimum? FETChVOLTageMAXimum? MEASureVOLTageLOW? FETChVOLTageLOW?MEASureVOLTageMINimum? FETChVOLTageMINimum? SENSeCURRentRANGe SENSeCURRentDETectorUnit a amperes *RST Value MAX high range Returned Parameters NR3SENSeFUNCtion SENSeSWEepOFFSetPOINtsSENSeSWEepPOINts SENSeSWEepTINTervalSENSeWINDow HANNingRECTangular Returned Parameters CRDOutput Commands OUTPutOUTPutDFI OUTPutDFISOURceOUTPutPONSTATe OUTPutPROTectionDELayOUTPutPROTectionCLEar OUTPutRELay OUTPutRELayPOLarityOUTPutRIMODE Query Syntax OUTPputRELayPOLarity?Default Suffix SOURceCURRentSOURceCURRentTRIGger SOURceCURRentPROTectionSTATeSOURceDIGitalDATA SOURceDIGitalFUNCtionSOURceVOLTage Query Syntax SOURceDIGitalDATA?SOURceVOLTageALCBANDwidth? SOURceVOLTageALCBWIDth? SOURceVOLTageTRIGgerSOURceVOLTagePROTection Agilent 66332A, 6631B, 6632B, 6633B and 6634B OnlyStatus Commands STATusPRESetSTATusOPERation? STATusOPERationCONDition?STATusOPERationENABle Query Syntax STATusOPERationENABle?Parameters Preset Value STATusOPERationNTR STATusOPERationPTRSTATusQUEStionable? STATusQUEStionableENABleSTATusQUEStionableCONDition? Command Syntax *CLS Parameters None STATusQUEStionableNTR STATusQUEStionablePTRCLS STATQUESNTR?STATQUESPTR?Bit Configuration of Standard Event Status Enable Register ESEESR? OPCPSC SREPSC on ExampleBit Configuration of Status Byte Register STB?WAI NR1 register binary valueSystem Commands DISPlayDISPlayMODE DISPlayTEXTSYSTemERRor? SYSTemLANGuageSYSTemVERSion? Parameters none Returned Parameters NR2SYSTemLOCal SYSTemREMoteSYSTemRWLock IDN?Command Syntax RCL NRf Parameters Example OPT?RCL RSTRST Settings Command Syntax SAV NRf Parameters ExampleSAV TST?Trigger Commands ABORtINITiateSEQuence INITiateNAME INITiateCONTinuousSEQuence1 INITiateCONTinuousNAMETRIGger TRIGgerSOURceTRIGgerSEQuence2 TRIGgerACQuire Abor Currtrig Init *TRG VolttrigTRIGgerSEQuence2COUNtCURRent TRIGgerACQuireCOUNtCURRent TRIGgerSEQuence2COUNtVOLTage TRIGgerACQuireCOUNtVOLTageParameters RST Value Examples TRIGSEQ2COUNCURR 5 TrigacqcouncurrTRIGSEQ2HYSTVOLT TRIGSEQ2LEVCURR TRIGSEQ2HYSTCURR TRIGSEQ2LEVVOLTTRIGgerSEQuence2LEVelCURRent TRIGgerACQuireLEVelCURRent TRIGgerSEQuence2LEVelVOLTage TRIGgerACQuireLEVelVOLTageTRIGSEQ2LEVVOLT TRIGSEQ2HYSTCURR TRIGSEQ2LEVCURR TRIGSEQ2HYSTVOLTTRIGgerSEQuence2SLOPeVOLTage TRIGgerACQuireSLOPeVOLTage TRIGgerSEQuence2SLOPeCURRent TRIGgerACQuireSLOPeCURRentTRIGSEQ2SLOPVOLT Parameters None Related Commands TRIGgerSEQuence2SOURce TRIGgerACQuireSOURceTRIGgerSEQuence1DEFine TRIGgerSEQuence2DEFine TRGPage Non-SCPI Commands Scpi Confirmed CommandsScpi Version Page Table B-1. COMPatibility Power-on Settings Command Command SettingTable B-2. COMPatibility Commands Compatibility ERR? FAULT? ID? IOUT?Similar Scpi Command ASTS? CLRCompatibility Command Table B-2. COMPatibility Commands Description Similar ScpiTable B-2. COMPatibility Commands Compatibility Description CommandThese commands determine the conditions that will set bits ErrorRQS ERR RDY Norm Fast INH ERR UNR +CCFAU Page Error Number List Bit Set Error Number Error Code Error TypeTable C-1. Error Numbers Error Number Page Assigning the Gpib Address in Programs Types of DOS DriversAgilent 82335A Driver National Instruments Gpib DriverError Handling Basic ControllersExample Programs D Example 2. IBM Controller Using National Interface Call IBCLRPS%CODES$=*CLS Example 3. Controller Using Basic Option BaseIndex Index 100101 Scpi102 Manual Updates
Related manuals
Manual 82 pages 25.5 Kb Manual 83 pages 60.43 Kb

6613C, 66312A, 6631B, 6611C, 6614C specifications

Agilent Technologies, a leader in electronic test and measurement solutions, offers a range of power supplies designed to meet various application needs. Notable models include the 6632B, 6634B, 66332A, 6633B, and 6612C. Each of these units provides unique features and technologies that cater to researchers, engineers, and technicians in the industry.

The Agilent 6632B is a single-output DC power supply that delivers up to 30V and 3A. It is known for its excellent load regulation and low noise, making it ideal for sensitive electronic testing. The model includes built-in voltage and current measurement capabilities, allowing users to monitor output conditions in real time. The 6632B is commonly used in laboratory environments, educational institutions, and manufacturing lines.

Moving to the 6634B, this model offers dual-output capabilities with a maximum output of 30V and 6A. This versatility enables simultaneous powering of two different devices or circuit sections. It also features parallel and series operation options, allowing users to create a custom power supply configuration for specific applications. With a programmable interface, the 6634B simplifies test automation, ensuring efficiency in extensive testing scenarios.

The Agilent 66332A stands out with its precision and high performance. This power supply provides three outputs—two programmable and one fixed—yielding flexible power configurations. Its intuitive user interface allows easy adjustment of voltage and current settings. The device is equipped with extensive protection features to safeguard both the power supply and the connected load against faults. It is an excellent choice for complex testing setups that require reliable power.

The 6633B model offers a high-performance power supply with dual outputs, similar to the 6634B but with enhanced specifications. It can provide up to 40V and 2A per channel, delivering precision for demanding applications. This model is particularly suited for industries focused on high-reliability applications, such as telecommunications and aerospace.

Lastly, the Agilent 6612C is a compact and lightweight power supply providing single-output up to 60V and 2A. This model is designed for simplicity and ease of use, making it an excellent choice for portable applications. The 6612C’s unique characteristics include a compact design and user-friendly controls, which facilitate operation in field settings.

In summary, Agilent Technologies’ power supply models—6632B, 6634B, 66332A, 6633B, and 6612C—offer an array of features that cater to a wide range of testing and research needs, ensuring reliable power delivery in various contexts.