Agilent Technologies 6611C, 6634B, 66332A, 6633B, 6632B manual Language Dictionary, Subsystem Commands

Page 39

4

Language Dictionary

Introduction

This section gives the syntax and parameters for all the IEEE 488.2 SCPI commands and the Common commands used by the dc source. It is assumed that you are familiar with the material in “Chapter 2 - "Remote Programming". That chapter explains the terms, symbols, and syntactical structures used here and gives an introduction to programming. You should also be familiar with “Chapter 4 - Front Panel Operation” (in the Operating Guide) in order to understand how the dc source functions.

The programming examples are simple applications of SCPI commands. Because the SCPI syntax remains the same for all programming languages, the examples given for each command are generic.

Syntax Forms

Syntax definitions use the long form, but only short form headers (or "keywords")

 

appear in the examples. Use the long form to help make your program self-

 

documenting.

Parameters

Most commands require a parameter and all queries will return a parameter.The range

 

for a parameter may vary according to the model of dc source. When this is the case,

 

refer to the Specifications table in the Operating Guide.

Models

If a command only applies to specific models, those models are listed in the <Model>

 

Only entry. If there is no <Model> Only entry, the command applies to all models.

Related

Where appropriate, related commands or queries are included. These are listed

Commands

because they are either directly related by function, or because reading about them will

 

clarify or enhance your understanding of the original command or query.

Order of

The dictionary is organized according to the following functions: calibration,

Presentation

measurement, output, status, system, and trigger. Both the subsystem commands and

 

the common commands that follow are arranged in alphabetical order under each

 

function.

Subsystem Commands

Subsystem commands are specific to functions. They can be a single command or a group of commands. The groups are comprised of commands that extend one or more levels below the root.

The subsystem command groups are grouped according to function: Calibration, Measurement, Output, Status, System, and Trigger. Commands under each function are grouped alphabetically. Commands followed by a question mark (?) take only the query form. When commands take both the command and query form, this is noted in the syntax descriptions. Table 4-1 lists all of the subsystem commands inalphabetical order.

39

Image 39
Contents Programming Guide Printing History Safety GuidelinesTable of Contents Internally Triggered Measurements Language DictionaryOutput Commands Example Programs Error MessagesScpi Conformance Information Compatibility LanguageDocumentation Summary About this GuideExternal References Gpib ReferencesScpi References System Requirements VXIplug&play Power Products Instrument DriversDownloading and Installing the Driver Supported ApplicationsGpib Address Accessing Online HelpGpib Capabilities of the DC Source RS-232 Capabilities of the DC SourceRS-232 Flow Control RS-232 Programming ExampleBaud Rate Boldface font RS-232 TroubleshootingIntroduction to Scpi Conventions Used in This GuideMultiple Commands in a Message Types of Scpi CommandsMoving Among Subsystems Including Common CommandsUsing Queries Types of Scpi MessagesMessage Unit Separator Query IndicatorMessage Unit HeadersResponse Data Types Scpi Data FormatsNumerical Data Formats Suffixes and MultipliersUsing Device Clear Scpi Command CompletionPage Enabling the Output Power-on InitializationIntroduction Programming the OutputMaximum Current Output VoltageOutput Current Maximum VoltageOutput Trigger System Model Setting the Voltage or Current Trigger LevelsTriggering Output Changes Scpi Triggering NomenclatureGenerating Triggers Initiating the Output Trigger SystemMaking Measurements Voltage and Current MeasurementsDC Measurements Current Ranges RMS Measurements Agilent 66312A, 66332A OnlyInternally Triggered Measurements Measurement Trigger System ModelSequence Form Alias SEQuence2 ACQuire BUS Generating Measurement Triggers Agilent 66312A, 66332A OnlyTrigger Commands Used to Measure Output Pulses Measuring Output Pulses Agilent 66312A, 66332A Only Current DetectorPulse Measurement Queries Controlling Measurement Samples Varying the Voltage or Current Sampling RateMultiple Measurements Agilent 66312A, 66332A Only Pre-event and Post-event Triggering Pulse Measurement Example Agilent 66312A, 66332A onlyOption Base Programming the Status Registers Power-On ConditionsOperation Status Group Questionable Status Group Standard Event Status GroupStatus Byte Register RQS Bit Determining the Cause of a Service InterruptServicing Operation Status and Questionable Status Events MSS BitRemote Inhibit RI Inhibit/Fault IndicatorMonitoring Both Phases of a Status Transition Discrete Fault Indicator DFIPin Using the Inhibit/Fault Port as a Digital I/OBit Weight DFI Programming ExamplePage Language Dictionary Subsystem CommandsSubsystem Commands Syntax ALC DFISubsystem Commands Syntax Output Programming Parameters Common CommandsCommon Commands Syntax Programming ParametersCALibrateCURRentMEASureLOWRange Calibration CommandsCALibrateCURRent CALibrateCURRentNEGativeCALibrateLEVel CALibratePASSwordCommand Syntax CALibrateSAVE Parameters None Examples CALibrateDATAQuery Syntax CALibrateSTATe? CALibrateSTATeCALibrateVOLTage CALibrateVOLTagePROTectionQuery Syntax Measurement CommandsMEASureARRayCURRent? FETChARRayCURRent? MEASureARRayVOLTage? FETChARRayVOLTage?FETChCURRent? applies to Agilent 66312A, 66332A Only MEASureCURRent? FETChCURRent?MEASureCURRentACDC? FETChCURRentACDC? MEASureCURRentHIGH? FETChCURRentHIGH?MEASureCURRentLOW? FETChCURRentLOW? MEASureCURRentMAXimum? FETChCURRent MAXimum?MEASureCURRentMINimum? FETChCURRentMINimum? FETChVOLTage? applies to Agilent 66312A, 66332A Only MEASureVOLTage? FETChVOLTage?MEASureVOLTageACDC? FETChVOLTageACDC? MEASureVOLTageHIGH? FETChVOLTageHIGH?MEASureVOLTageLOW? FETChVOLTageLOW? MEASureVOLTageMAXimum? FETChVOLTageMAXimum?MEASureVOLTageMINimum? FETChVOLTageMINimum? Returned Parameters NR3 SENSeCURRentRANGeSENSeCURRentDETector Unit a amperes *RST Value MAX high rangeSENSeSWEepTINTerval SENSeFUNCtionSENSeSWEepOFFSetPOINts SENSeSWEepPOINtsReturned Parameters CRD SENSeWINDowHANNing RECTangularOUTPutDFISOURce Output CommandsOUTPut OUTPutDFIOUTPutPROTectionDELay OUTPutPONSTATeOUTPutPROTectionCLEar Query Syntax OUTPputRELayPOLarity? OUTPutRELayOUTPutRELayPOLarity OUTPutRIMODESOURceCURRentPROTectionSTATe Default SuffixSOURceCURRent SOURceCURRentTRIGgerQuery Syntax SOURceDIGitalDATA? SOURceDIGitalDATASOURceDIGitalFUNCtion SOURceVOLTageAgilent 66332A, 6631B, 6632B, 6633B and 6634B Only SOURceVOLTageALCBANDwidth? SOURceVOLTageALCBWIDth?SOURceVOLTageTRIGger SOURceVOLTagePROTectionSTATusOPERationCONDition? Status CommandsSTATusPRESet STATusOPERation?STATusOPERationNTR STATusOPERationPTR STATusOPERationENABleQuery Syntax STATusOPERationENABle? Parameters Preset ValueSTATusQUEStionableENABle STATusQUEStionable?STATusQUEStionableCONDition? STATQUESNTR?STATQUESPTR? Command Syntax *CLS Parameters NoneSTATusQUEStionableNTR STATusQUEStionablePTR CLSOPC Bit Configuration of Standard Event Status Enable RegisterESE ESR?Example PSCSRE PSC onNR1 register binary value Bit Configuration of Status Byte RegisterSTB? WAIDISPlayTEXT System CommandsDISPlay DISPlayMODEParameters none Returned Parameters NR2 SYSTemERRor?SYSTemLANGuage SYSTemVERSion?IDN? SYSTemLOCalSYSTemREMote SYSTemRWLockRST Command Syntax RCL NRf Parameters ExampleOPT? RCLTST? RST SettingsCommand Syntax SAV NRf Parameters Example SAVINITiateCONTinuousSEQuence1 INITiateCONTinuousNAME Trigger CommandsABORt INITiateSEQuence INITiateNAMEAbor Currtrig Init *TRG Volttrig TRIGgerTRIGgerSOURce TRIGgerSEQuence2 TRIGgerACQuireTRIGSEQ2COUNCURR 5 Trigacqcouncurr TRIGgerSEQuence2COUNtCURRent TRIGgerACQuireCOUNtCURRentTRIGgerSEQuence2COUNtVOLTage TRIGgerACQuireCOUNtVOLTage Parameters RST Value ExamplesTRIGSEQ2HYSTCURR TRIGSEQ2LEVVOLT TRIGSEQ2HYSTVOLT TRIGSEQ2LEVCURRTRIGSEQ2LEVCURR TRIGSEQ2HYSTVOLT TRIGgerSEQuence2LEVelCURRent TRIGgerACQuireLEVelCURRentTRIGgerSEQuence2LEVelVOLTage TRIGgerACQuireLEVelVOLTage TRIGSEQ2LEVVOLT TRIGSEQ2HYSTCURRTRIGgerSEQuence2SLOPeCURRent TRIGgerACQuireSLOPeCURRent TRIGgerSEQuence2SLOPeVOLTage TRIGgerACQuireSLOPeVOLTageTRIGSEQ2SLOPVOLT TRG Parameters None Related CommandsTRIGgerSEQuence2SOURce TRIGgerACQuireSOURce TRIGgerSEQuence1DEFine TRIGgerSEQuence2DEFinePage Scpi Confirmed Commands Non-SCPI CommandsScpi Version Page Command Setting Table B-1. COMPatibility Power-on Settings CommandASTS? CLR Table B-2. COMPatibility Commands CompatibilityERR? FAULT? ID? IOUT? Similar Scpi CommandTable B-2. COMPatibility Commands Description Similar Scpi Compatibility CommandError Table B-2. COMPatibility CommandsCompatibility Description Command These commands determine the conditions that will set bitsNorm Fast INH ERR UNR +CC RQS ERR RDYFAU Page Bit Set Error Number Error Code Error Type Error Number ListTable C-1. Error Numbers Error Number Page National Instruments Gpib Driver Assigning the Gpib Address in ProgramsTypes of DOS Drivers Agilent 82335A DriverBasic Controllers Error HandlingExample Programs D Call IBCLRPS% Example 2. IBM Controller Using National InterfaceCODES$=*CLS Option Base Example 3. Controller Using BasicIndex 100 IndexScpi 101102 Manual Updates
Related manuals
Manual 82 pages 25.5 Kb Manual 83 pages 60.43 Kb

6613C, 66312A, 6631B, 6611C, 6614C specifications

Agilent Technologies, a leader in electronic test and measurement solutions, offers a range of power supplies designed to meet various application needs. Notable models include the 6632B, 6634B, 66332A, 6633B, and 6612C. Each of these units provides unique features and technologies that cater to researchers, engineers, and technicians in the industry.

The Agilent 6632B is a single-output DC power supply that delivers up to 30V and 3A. It is known for its excellent load regulation and low noise, making it ideal for sensitive electronic testing. The model includes built-in voltage and current measurement capabilities, allowing users to monitor output conditions in real time. The 6632B is commonly used in laboratory environments, educational institutions, and manufacturing lines.

Moving to the 6634B, this model offers dual-output capabilities with a maximum output of 30V and 6A. This versatility enables simultaneous powering of two different devices or circuit sections. It also features parallel and series operation options, allowing users to create a custom power supply configuration for specific applications. With a programmable interface, the 6634B simplifies test automation, ensuring efficiency in extensive testing scenarios.

The Agilent 66332A stands out with its precision and high performance. This power supply provides three outputs—two programmable and one fixed—yielding flexible power configurations. Its intuitive user interface allows easy adjustment of voltage and current settings. The device is equipped with extensive protection features to safeguard both the power supply and the connected load against faults. It is an excellent choice for complex testing setups that require reliable power.

The 6633B model offers a high-performance power supply with dual outputs, similar to the 6634B but with enhanced specifications. It can provide up to 40V and 2A per channel, delivering precision for demanding applications. This model is particularly suited for industries focused on high-reliability applications, such as telecommunications and aerospace.

Lastly, the Agilent 6612C is a compact and lightweight power supply providing single-output up to 60V and 2A. This model is designed for simplicity and ease of use, making it an excellent choice for portable applications. The 6612C’s unique characteristics include a compact design and user-friendly controls, which facilitate operation in field settings.

In summary, Agilent Technologies’ power supply models—6632B, 6634B, 66332A, 6633B, and 6612C—offer an array of features that cater to a wide range of testing and research needs, ensuring reliable power delivery in various contexts.