Agilent Technologies 6614C, 6634B, 66332A, 6633B, 6632B, 6613C manual Error Handling, Basic Controllers

Page 94

D - Example Programs

Your application program will not include the dc source’s symbolic name and GPIB address. These must be specified during configuration (when you run IBCONF.EXE). Note that the primary address range is from 0 to 30 but any secondary address must be specified in the address range of 96 to 126. The dc source expects a message termination on EOI or line feed, so set EOI w/last byte of Write. It is also recommended that you set Disable Auto Serial Polling.

All function calls return the status word IBSTA%, which contains a bit (ERR) that is set if the call results in an error. When ERR is set, an appropriate code is placed in variable IBERR%. Be sure to check IBSTA% after every function call. If it is not equal to zero, branch to an error handler that reads IBERR% to extract the specific error.

Error Handling

If there is no error-handling code in your program, undetected errors can cause unpredictable results. This includes "hanging up" the controller and forcing you to reset the system. Both of the above DOS drivers have routines for detecting program execution errors. Error detection should be used after every call to a subroutine.

BASIC Controllers

The BASIC Programming Language provides access to GPIB functions at the operating system level. This makes it unnecessary to have the header files required in front of DOS applications programs. Also, you do not have to be concerned about controller "hangups" as long as your program includes a timeout statement. Because the dc source can be programmed to generate SRQ on errors, your program can use an SRQ service routine for decoding detected errors. The detectable errors are listed in Appendix C.

Example 1. HP Vectra PC Controller Using Agilent 82335 Interface

5’-------------------- Merge SETUP.BAS here --------------------

1000 MAX.ELEMENTS=2 :ACTUAL.ELEMENTS=0 :MAX.LENGTH=80 :ACT.LENGTH=0

1005 DIM OUTPUTS(2) :CODES$=SPACE$(40)

1010 ISC=7 :PS=706

1015 ’

1020 ’Set up the DC Source Interface for DOS driver

1025

CALL IORESET (ISC)

’Reset the interface

1030

IF PCIB.ERR

<>

NOERR THEN ERROR PCIB.BASERR

1035

TIMEOUT=3

 

 

 

1040

CALL IOTIMEOUT

(ISC, TIMEOUT)

’Set timeout to 3 seconds

1045

IF PCIB.ERR

<>

NOERR THEN ERROR PCIB.BASERR

1050

CALL IOCLEAR (ISC)

’Clear the interface

1055

IF PCIB.ERR

<>

NOERR THEN ERROR PCIB.BASERR

1060

CALL IOREMOTE (ISC)

’Set dc source to remote

mode

 

 

 

 

1065

IF PCIB.ERR

<>

NOERR THEN ERROR PCIB.BASERR

1070

 

 

 

1075

’Program dc

source to CV mode with following voltage and current

1080

CODES$ = "VOLTAGE MAX;CURRENT MAX"

:GOSUB 2000

94

Image 94
Contents Programming Guide Safety Guidelines Printing HistoryTable of Contents Language Dictionary Internally Triggered MeasurementsOutput Commands Compatibility Language Error MessagesScpi Conformance Information Example ProgramsAbout this Guide Documentation SummaryGpib References External ReferencesScpi References Supported Applications VXIplug&play Power Products Instrument DriversDownloading and Installing the Driver System RequirementsRS-232 Capabilities of the DC Source Accessing Online HelpGpib Capabilities of the DC Source Gpib AddressRS-232 Programming Example RS-232 Flow ControlBaud Rate Conventions Used in This Guide RS-232 TroubleshootingIntroduction to Scpi Boldface fontTypes of Scpi Commands Multiple Commands in a MessageTypes of Scpi Messages Including Common CommandsUsing Queries Moving Among SubsystemsHeaders Query IndicatorMessage Unit Message Unit SeparatorSuffixes and Multipliers Scpi Data FormatsNumerical Data Formats Response Data TypesScpi Command Completion Using Device ClearPage Programming the Output Power-on InitializationIntroduction Enabling the OutputMaximum Voltage Output VoltageOutput Current Maximum CurrentScpi Triggering Nomenclature Setting the Voltage or Current Trigger LevelsTriggering Output Changes Output Trigger System ModelInitiating the Output Trigger System Generating TriggersVoltage and Current Measurements Making MeasurementsDC Measurements RMS Measurements Agilent 66312A, 66332A Only Current RangesMeasurement Trigger System Model Internally Triggered MeasurementsSequence Form Alias SEQuence2 ACQuire Generating Measurement Triggers Agilent 66312A, 66332A Only BUSTrigger Commands Used to Measure Output Pulses Current Detector Measuring Output Pulses Agilent 66312A, 66332A OnlyPulse Measurement Queries Varying the Voltage or Current Sampling Rate Controlling Measurement SamplesMultiple Measurements Agilent 66312A, 66332A Only Pulse Measurement Example Agilent 66312A, 66332A only Pre-event and Post-event TriggeringOption Base Power-On Conditions Programming the Status RegistersOperation Status Group Standard Event Status Group Questionable Status GroupStatus Byte Register MSS Bit Determining the Cause of a Service InterruptServicing Operation Status and Questionable Status Events RQS BitDiscrete Fault Indicator DFI Inhibit/Fault IndicatorMonitoring Both Phases of a Status Transition Remote Inhibit RIDFI Programming Example Using the Inhibit/Fault Port as a Digital I/OBit Weight PinPage Subsystem Commands Language DictionarySubsystem Commands Syntax DFI ALCSubsystem Commands Syntax Programming Parameters Common CommandsCommon Commands Syntax Output Programming ParametersCALibrateCURRentNEGative Calibration CommandsCALibrateCURRent CALibrateCURRentMEASureLOWRangeCALibrateDATA CALibratePASSwordCommand Syntax CALibrateSAVE Parameters None Examples CALibrateLEVelCALibrateVOLTagePROTection CALibrateSTATeCALibrateVOLTage Query Syntax CALibrateSTATe?MEASureARRayVOLTage? FETChARRayVOLTage? Measurement CommandsMEASureARRayCURRent? FETChARRayCURRent? Query SyntaxMEASureCURRentHIGH? FETChCURRentHIGH? MEASureCURRent? FETChCURRent?MEASureCURRentACDC? FETChCURRentACDC? FETChCURRent? applies to Agilent 66312A, 66332A OnlyMEASureCURRentMAXimum? FETChCURRent MAXimum? MEASureCURRentLOW? FETChCURRentLOW?MEASureCURRentMINimum? FETChCURRentMINimum? MEASureVOLTageHIGH? FETChVOLTageHIGH? MEASureVOLTage? FETChVOLTage?MEASureVOLTageACDC? FETChVOLTageACDC? FETChVOLTage? applies to Agilent 66312A, 66332A OnlyMEASureVOLTageMAXimum? FETChVOLTageMAXimum? MEASureVOLTageLOW? FETChVOLTageLOW?MEASureVOLTageMINimum? FETChVOLTageMINimum? Unit a amperes *RST Value MAX high range SENSeCURRentRANGeSENSeCURRentDETector Returned Parameters NR3SENSeSWEepPOINts SENSeFUNCtionSENSeSWEepOFFSetPOINts SENSeSWEepTINTervalRECTangular SENSeWINDowHANNing Returned Parameters CRDOUTPutDFI Output CommandsOUTPut OUTPutDFISOURceOUTPutPONSTATe OUTPutPROTectionDELayOUTPutPROTectionCLEar OUTPutRIMODE OUTPutRELayOUTPutRELayPOLarity Query Syntax OUTPputRELayPOLarity?SOURceCURRentTRIGger Default SuffixSOURceCURRent SOURceCURRentPROTectionSTATeSOURceVOLTage SOURceDIGitalDATASOURceDIGitalFUNCtion Query Syntax SOURceDIGitalDATA?SOURceVOLTagePROTection SOURceVOLTageALCBANDwidth? SOURceVOLTageALCBWIDth?SOURceVOLTageTRIGger Agilent 66332A, 6631B, 6632B, 6633B and 6634B OnlySTATusOPERation? Status CommandsSTATusPRESet STATusOPERationCONDition?Parameters Preset Value STATusOPERationENABleQuery Syntax STATusOPERationENABle? STATusOPERationNTR STATusOPERationPTRSTATusQUEStionable? STATusQUEStionableENABleSTATusQUEStionableCONDition? CLS Command Syntax *CLS Parameters NoneSTATusQUEStionableNTR STATusQUEStionablePTR STATQUESNTR?STATQUESPTR?ESR? Bit Configuration of Standard Event Status Enable RegisterESE OPCPSC on PSCSRE ExampleWAI Bit Configuration of Status Byte RegisterSTB? NR1 register binary valueDISPlayMODE System CommandsDISPlay DISPlayTEXTSYSTemVERSion? SYSTemERRor?SYSTemLANGuage Parameters none Returned Parameters NR2SYSTemRWLock SYSTemLOCalSYSTemREMote IDN?RCL Command Syntax RCL NRf Parameters ExampleOPT? RSTSAV RST SettingsCommand Syntax SAV NRf Parameters Example TST?INITiateSEQuence INITiateNAME Trigger CommandsABORt INITiateCONTinuousSEQuence1 INITiateCONTinuousNAMETRIGgerSEQuence2 TRIGgerACQuire TRIGgerTRIGgerSOURce Abor Currtrig Init *TRG VolttrigParameters RST Value Examples TRIGgerSEQuence2COUNtCURRent TRIGgerACQuireCOUNtCURRentTRIGgerSEQuence2COUNtVOLTage TRIGgerACQuireCOUNtVOLTage TRIGSEQ2COUNCURR 5 TrigacqcouncurrTRIGSEQ2HYSTVOLT TRIGSEQ2LEVCURR TRIGSEQ2HYSTCURR TRIGSEQ2LEVVOLTTRIGSEQ2LEVVOLT TRIGSEQ2HYSTCURR TRIGgerSEQuence2LEVelCURRent TRIGgerACQuireLEVelCURRentTRIGgerSEQuence2LEVelVOLTage TRIGgerACQuireLEVelVOLTage TRIGSEQ2LEVCURR TRIGSEQ2HYSTVOLTTRIGgerSEQuence2SLOPeVOLTage TRIGgerACQuireSLOPeVOLTage TRIGgerSEQuence2SLOPeCURRent TRIGgerACQuireSLOPeCURRentTRIGSEQ2SLOPVOLT TRIGgerSEQuence1DEFine TRIGgerSEQuence2DEFine Parameters None Related CommandsTRIGgerSEQuence2SOURce TRIGgerACQuireSOURce TRGPage Non-SCPI Commands Scpi Confirmed CommandsScpi Version Page Table B-1. COMPatibility Power-on Settings Command Command SettingSimilar Scpi Command Table B-2. COMPatibility Commands CompatibilityERR? FAULT? ID? IOUT? ASTS? CLRCompatibility Command Table B-2. COMPatibility Commands Description Similar ScpiThese commands determine the conditions that will set bits Table B-2. COMPatibility CommandsCompatibility Description Command ErrorRQS ERR RDY Norm Fast INH ERR UNR +CCFAU Page Error Number List Bit Set Error Number Error Code Error TypeTable C-1. Error Numbers Error Number Page Agilent 82335A Driver Assigning the Gpib Address in ProgramsTypes of DOS Drivers National Instruments Gpib DriverError Handling Basic ControllersExample Programs D Example 2. IBM Controller Using National Interface Call IBCLRPS%CODES$=*CLS Example 3. Controller Using Basic Option BaseIndex Index 100101 Scpi102 Manual Updates
Related manuals
Manual 82 pages 25.5 Kb Manual 83 pages 60.43 Kb

6613C, 66312A, 6631B, 6611C, 6614C specifications

Agilent Technologies, a leader in electronic test and measurement solutions, offers a range of power supplies designed to meet various application needs. Notable models include the 6632B, 6634B, 66332A, 6633B, and 6612C. Each of these units provides unique features and technologies that cater to researchers, engineers, and technicians in the industry.

The Agilent 6632B is a single-output DC power supply that delivers up to 30V and 3A. It is known for its excellent load regulation and low noise, making it ideal for sensitive electronic testing. The model includes built-in voltage and current measurement capabilities, allowing users to monitor output conditions in real time. The 6632B is commonly used in laboratory environments, educational institutions, and manufacturing lines.

Moving to the 6634B, this model offers dual-output capabilities with a maximum output of 30V and 6A. This versatility enables simultaneous powering of two different devices or circuit sections. It also features parallel and series operation options, allowing users to create a custom power supply configuration for specific applications. With a programmable interface, the 6634B simplifies test automation, ensuring efficiency in extensive testing scenarios.

The Agilent 66332A stands out with its precision and high performance. This power supply provides three outputs—two programmable and one fixed—yielding flexible power configurations. Its intuitive user interface allows easy adjustment of voltage and current settings. The device is equipped with extensive protection features to safeguard both the power supply and the connected load against faults. It is an excellent choice for complex testing setups that require reliable power.

The 6633B model offers a high-performance power supply with dual outputs, similar to the 6634B but with enhanced specifications. It can provide up to 40V and 2A per channel, delivering precision for demanding applications. This model is particularly suited for industries focused on high-reliability applications, such as telecommunications and aerospace.

Lastly, the Agilent 6612C is a compact and lightweight power supply providing single-output up to 60V and 2A. This model is designed for simplicity and ease of use, making it an excellent choice for portable applications. The 6612C’s unique characteristics include a compact design and user-friendly controls, which facilitate operation in field settings.

In summary, Agilent Technologies’ power supply models—6632B, 6634B, 66332A, 6633B, and 6612C—offer an array of features that cater to a wide range of testing and research needs, ensuring reliable power delivery in various contexts.