Siemens SPC3 manual PROFIBUS-DP Interface, DPBuffer Structure

Page 28

PROFIBUS Interface Center

SPC3

 

 

 

 

 

 

 

6PROFIBUS-DP Interface

6.1 DP_Buffer Structure

The DP mode is enabled in the SPC3 with ‘DP_Mode = 1’ (see mode Register0). In this process, the following SAPS are fixed reserved for the DP mode:

`

Default SAP:

Data exchange (Write_Read_Data)

`

SAP53:

reserved

`

SAP55:

Changing the station address (Set_Slave_Address)

`

SAP56:

Reading the inputs (Read_Inputs)

`

SAP57:

Reading the outputs (Read_Outputs)

`

SAP58:

Control commands to the DP-Slave (Global_Control)

`

SAP59:

Reading configuration data (Get_Config)

`

SAP60:

Reading diagnostics information (Slave_Diagnosis)

`

SAP61:

Sending parameter setting data (Set_Param)

`

SAP62:

Checking configuration data (Check_Config)

The DP Slave protocol is completely integrated in the SPC3 and is handled independently. The user must correspondingly parameterize the ASIC and process and acknowledge transferred messages. Except for the default SAP, SAP56, SAP57, and SAP58, all SAPS are always enabled. The remaining SAPS are not enabled until the the DP Slave Machine (DP_SM) goes into the ‘DATA_EX’ state. The user has the possibility of disabling SAP55. The relevant buffer pointer R_SSA_Puf_Ptr must be set to ‘00H’ for this purpose. The DDB utility is disabled by the already described initialization of the RAM cells.

The DP_SAP buffer structure is displayed in Figure 6.1. The user configures all buffers (length and buffer beginning) in the ‘offline state.’ During operation, the buffer configuration must not be changed, except for the length of the Dout-/Din buffers.

The user may still adapt these buffers in the ‘Wait_Cfg’ state after the configuration telegram (Check_Config). Only the same configuration may be accepted in the ‘DATA_EX’ state.

The buffer structure is divided into the data buffer, diagnostics buffer, and the control buffer.

Both the output data and the input data have three buffers each available with the same length. These buffers function as change buffers. One buffer is assigned to the ‘D’ data transfer, and one buffer si assigned to the ‘U’ user. The third buffer is either in a Next ‘N’ state or Free ‘F’ state, whereby neo of the two states is always unoccupied.

Two diagnostics buffers that can have varying lengths are available for diagnostics. One diagnostics buffer is always the ‘D’ assigned to SPC3 for sending. The other diagnostics buffer belongs to the user for preparing new diagnostics data, ‘U.’

The SPC3 first reads the different parameter setting telegrams (Set_Slave_Address, and Set_Param) and

the configuring telegram (Check_Config) into Aux-Puffer1 or Aux-Puffer 2.....

Page 26

V1.3

SPC3 Hardware Description

2003/04

 

Copyright (C) Siemens AG 2003. All rights reserved.

Image 28
Contents Simatic NET Page SIM Atic NET Profibus Interface Center SPC3 Hardware DescriptionVersions Release Date ChangesMode Register Status Register Interrupt Controller Watchdog TimerDPBuffer Structure Description of the DP Services DirectoryAsic Test 11.3 Diagnostics Processing from the System ViewPin Assignment Example for the RS 485 Interface SPC3 Introduction Function Overview Pin Description CmosCPD Cmos with pull down TTLt Schmitt trigger V1.3 Memory Area Distribution in the SPC3 Memory Allocation5FFH Segment Processor Parameters Latches/Register OCH 0DH Significance Write Access0EH 0FH Organizational Parameters RAM 1AH 1BH1CH 1DHMode Register Asic InterfaceDisstartcontrol Mode Register 1 Mode-REG1, writable STARTSPC3Exiting the Offline state EOIStatus Register Fdlindst Status Register Bit15 . .readableInterrupt Controller SPC3 IRR IMRDxout IMR IARWatchdog Timer Automatic Baud Rate IdentificationBaud Rate Monitoring Response Time MonitoringPROFIBUS-DP Interface DPBuffer StructureUart RAM Aux-Buffer ManagementSetSlaveAddress SAP55 Description of the DP ServicesSequence for the SetSlaveAddress Utility Parameter Data Structure SetParam SAP61Parameter Data Processing Sequence CheckConfig SAP62 SPC3SlaveDiagnosis SAP60 Diagnostics Processing SequenceSPC3 WriteReadData / DataExchange DefaultSAP Structure of the Diagnostics BufferWriting Outputs Reading Inputs UserWatchdogTimer GlobalControl SAP58ReadInputs SAP56 GetConfig SAP59ReadOutputs SAP57 Hardware Interface Universal Processor Bus InterfaceGeneral Description Bus Interface Unit BIUXINT/MO Mode Bus Interface V1.3Switching Diagram Principles Low Cost System with 80C32System X86-Mode SPC3 Application with the 80 CApplication with th 80 C Uart Interface SignalsAsic Test Technical Data Maximum Limit ValuesPermitted Operating Values DC-Specifikation of the I/O- DriversTabel 8.3 DC-Specifikation of the I/O- Drivers AC-Specification for the Output DriversCurrent Tabelle 8.5 Leakage current of the output drivers Timing Characteristics SYS Bus InterfaceClock pulse 48 Mhz Clock Pulse TimingReset Timing in the Synchronous C32-ModeST-Vers Min Max Unit TBDSynchronous Intel-Mode, Processor-Read-Timing Synchronous Intel-Mode, Processor-Write-TimingST-Vers Timing in the Asynchronous Intel Mode X86 ModeParameter Min Max Asynchronous Intel-Mode, Processor-Read-Timing XRD XCS XreadyAsynchronous Intel-Mode, Processor-Write-Timing XWR XCS4.1 74.2 Synchronous Motorola-Mode, Processor-Read-TimingSynchronous Motorola-Mode, Processor-Write-Timing Timing in the Asynchronous Motorola-Mode for example, 68HC16XCS Xdsack Asynchronous Motorola-Mode, Processor-Read-TimingAsynchronous Motorola-Mode, Processor-Write-Timing Serial Bus Interface Pulse 48 MHzHousing PQFP-44 Housing SPC3 Hardware Description Symbol Min Typ Max AMI-Vers 13.6513.90 14.15Profibus Interface Pin AssignmentRTS TXDExample for the RS 485 Interface SN65ALS1176Appendix AddressesProfibus User Organisation Technical contact person at ComDeC in GermanyGeneral Definition of Terms Ordering of ASICs10.3.1 SPC3 AMI 10.3.2 SPC3 STAppendix a Diagnostics Processing in Profibus DP Diagnostics Bits and Expanded DiagnosticsIntroduction StatdiagIdentifier Byte 7 has Etc Identifier Byte 0 has Diagnostics Processing from the System View Single DiagnosticsSimatic S5 / COM ET CombiAppendix B Useful Information Data format in the Siemens PLC SimaticPage Siemens Aktiengesellschaft

SPC3 specifications

Siemens SPC3 is a state-of-the-art solution designed to enhance industrial automation, providing businesses with a robust platform for managing complex processes efficiently. This device epitomizes Siemens' commitment to innovation, blending cutting-edge technology with user-friendly features to deliver optimized performance across various applications.

One of the standout features of the Siemens SPC3 is its advanced processing capabilities. Equipped with high-performance processors, it can handle various tasks simultaneously, ensuring seamless operation even in demanding environments. This performance is complemented by enhanced memory capacity, which allows for increased data handling and improved execution speed, crucial for real-time monitoring and control applications.

The Siemens SPC3 also integrates a modular design, enabling flexibility and scalability. This characteristic allows users to customize their systems according to specific operational needs, adding or removing components as required. This adaptability is particularly beneficial for businesses that aim to scale their operations without incurring the substantial costs associated with overhauling existing systems.

Furthermore, the SPC3 employs the latest communication technologies, ensuring interoperability with various devices and systems. It supports industry-standard protocols, facilitating efficient data exchange between components. This connectivity is vital for establishing smart factories and enhancing overall productivity by creating a unified ecosystem.

Another significant aspect of the Siemens SPC3 is its focus on security. As cyber threats in industrial settings become increasingly sophisticated, Siemens prioritizes safeguarding user data and system integrity. The SPC3 incorporates advanced security features, including encryption and access control measures, to protect against unauthorized access and ensure data confidentiality.

Siemens has also emphasized ease of use in the SPC3. The interface is designed to be intuitive, allowing operators to navigate and configure the system effortlessly. Coupled with comprehensive software tools, users are empowered to implement changes swiftly while minimizing downtime.

In terms of energy efficiency, the SPC3 incorporates technologies that allow for optimized energy consumption, aligning with sustainability goals prevalent in today’s industries. By reducing energy waste, businesses not only lower operational costs but also contribute to environmental conservation.

In summary, Siemens SPC3 represents a significant advancement in industrial automation technology. Its high-performance processing, modular adaptability, advanced communication capabilities, robust security measures, and user-friendly design make it an ideal choice for businesses striving for efficiency and innovation in their operations. The SPC3 is more than just a control device; it is a comprehensive solution that meets the evolving demands of modern industries.