Siemens SPC3 Diagnostics Processing from the System View, Simatic S5 / COM ET, Single Diagnostics

Page 65

 

 

SPC3

PROFIBUS Interface Center

 

 

 

 

 

 

11.2.3 EXT_DIAG_OVERFLOW

This bit is set if more diagnostics data is present than will fit in the available diagnostics data area. For example, more channel diagnostics could be present than the send buffer or the receive buffer makes possible.

11.3 Diagnostics Processing from the System View

Inasmuch as it is bus-specific, the diagnostics information of the slaves is managed solely by the master interface (for example, IM308B).

All diagnostics from the application are made available to the S6 program via corresponding data bytes. If the External Diagnostics bit is set, the slaves to be diagnosed can already be evaluated in the diagnostics overview. Then, a special error routine can be called up, whereby the standard diagnostics information and the user-specific information can be evaluated.

After eliminating the current diagnostics situation, this can be signalled as a status message from the slave without setting the external diagnostics bit.

With the COM ET200, a comfortable diagnostics tool is available on-line. At the present time, identification- related diagnostics information can be displayed with it in plain text. In later phases, channel-related diagnostics will also be supported. User-specific diagnostics are only displayed if the EXT_DIAG bit is set.

The figure below shows a screen during data processing, for example:

Set Program File

C:PNO4..ET.200

SIMATIC S5 / COM ET 200

SINGLE DIAGNOSTICS

 

 

Station Number: 30

 

Station Type: ET 200U-

Station Designation:

Station4

COMBI

 

Station Status:

Slave not ready for data

 

 

exchange

 

 

External diagnostics

 

 

Configuration error

 

Device-Related Diagnostics

 

 

 

KH = 01

 

Identification-Related

Diagnostics

Slot

3

Active

 

 

 

 

 

 

 

F1

F2

F3

F4

F5

F6

F7

F8

 

 

 

 

 

 

 

EXIT

In the type file for the COM ET200 and in the GSD [device master data] file, fields are already provided for referencing device-specific bits and pertinent plain text messages (for example, Bit 7: „I have had t;i good night!“).

SPC3 Hardware Description

V1.3

Page 63

Copyright (C) Siemens AG 2003 All rights reserved.

 

2003/04

Image 65
Contents Simatic NET Page SIM Atic NET SPC3 Hardware Description Profibus Interface CenterRelease Date Changes VersionsStatus Register Interrupt Controller Watchdog Timer Mode RegisterDPBuffer Structure Description of the DP Services DirectoryPin Assignment Example for the RS 485 Interface 11.3 Diagnostics Processing from the System ViewAsic Test SPC3 Introduction Function Overview Cmos Pin DescriptionCPD Cmos with pull down TTLt Schmitt trigger V1.3 5FFH Memory AllocationMemory Area Distribution in the SPC3 Segment Processor Parameters Latches/Register 0EH 0FH Significance Write AccessOCH 0DH Organizational Parameters RAM 1BH 1AH1CH 1DHAsic Interface Mode RegisterDisstartcontrol STARTSPC3 Mode Register 1 Mode-REG1, writableExiting the Offline state EOIStatus Register Status Register Bit15 . .readable FdlindstSPC3 IRR IMR Interrupt ControllerDxout IAR IMRAutomatic Baud Rate Identification Watchdog TimerBaud Rate Monitoring Response Time MonitoringDPBuffer Structure PROFIBUS-DP InterfaceUart Aux-Buffer Management RAMSequence for the SetSlaveAddress Utility Description of the DP ServicesSetSlaveAddress SAP55 Parameter Data Processing Sequence SetParam SAP61Parameter Data Structure SPC3 CheckConfig SAP62SPC3 Diagnostics Processing SequenceSlaveDiagnosis SAP60 Writing Outputs Structure of the Diagnostics BufferWriteReadData / DataExchange DefaultSAP Reading Inputs GlobalControl SAP58 UserWatchdogTimerReadOutputs SAP57 GetConfig SAP59ReadInputs SAP56 Universal Processor Bus Interface Hardware InterfaceGeneral Description Bus Interface Unit BIUBus Interface V1.3 XINT/MO ModeLow Cost System with 80C32 Switching Diagram PrinciplesSystem X86-Mode Application with the 80 C SPC3Application with th 80 C Asic Test Interface SignalsUart Maximum Limit Values Technical DataPermitted Operating Values DC-Specifikation of the I/O- DriversCurrent Tabelle 8.5 Leakage current of the output drivers AC-Specification for the Output DriversTabel 8.3 DC-Specifikation of the I/O- Drivers SYS Bus Interface Timing CharacteristicsClock pulse 48 Mhz Clock Pulse TimingTiming in the Synchronous C32-Mode ResetST-Vers Min Max Unit TBDSynchronous Intel-Mode, Processor-Write-Timing Synchronous Intel-Mode, Processor-Read-TimingParameter Min Max Timing in the Asynchronous Intel Mode X86 ModeST-Vers XRD XCS Xready Asynchronous Intel-Mode, Processor-Read-TimingAsynchronous Intel-Mode, Processor-Write-Timing XWR XCSSynchronous Motorola-Mode, Processor-Read-Timing 4.1 74.2Timing in the Asynchronous Motorola-Mode for example, 68HC16 Synchronous Motorola-Mode, Processor-Write-TimingAsynchronous Motorola-Mode, Processor-Write-Timing Asynchronous Motorola-Mode, Processor-Read-TimingXCS Xdsack Pulse 48 MHz Serial Bus InterfaceHousing PQFP-44 Housing SPC3 Hardware Description 13.65 Symbol Min Typ Max AMI-Vers13.90 14.15Pin Assignment Profibus InterfaceRTS TXDSN65ALS1176 Example for the RS 485 InterfaceAddresses AppendixProfibus User Organisation Technical contact person at ComDeC in GermanyOrdering of ASICs General Definition of Terms10.3.1 SPC3 AMI 10.3.2 SPC3 STDiagnostics Bits and Expanded Diagnostics Appendix a Diagnostics Processing in Profibus DPIntroduction StatdiagIdentifier Byte 7 has Etc Identifier Byte 0 has Single Diagnostics Diagnostics Processing from the System ViewSimatic S5 / COM ET CombiData format in the Siemens PLC Simatic Appendix B Useful InformationPage Siemens Aktiengesellschaft

SPC3 specifications

Siemens SPC3 is a state-of-the-art solution designed to enhance industrial automation, providing businesses with a robust platform for managing complex processes efficiently. This device epitomizes Siemens' commitment to innovation, blending cutting-edge technology with user-friendly features to deliver optimized performance across various applications.

One of the standout features of the Siemens SPC3 is its advanced processing capabilities. Equipped with high-performance processors, it can handle various tasks simultaneously, ensuring seamless operation even in demanding environments. This performance is complemented by enhanced memory capacity, which allows for increased data handling and improved execution speed, crucial for real-time monitoring and control applications.

The Siemens SPC3 also integrates a modular design, enabling flexibility and scalability. This characteristic allows users to customize their systems according to specific operational needs, adding or removing components as required. This adaptability is particularly beneficial for businesses that aim to scale their operations without incurring the substantial costs associated with overhauling existing systems.

Furthermore, the SPC3 employs the latest communication technologies, ensuring interoperability with various devices and systems. It supports industry-standard protocols, facilitating efficient data exchange between components. This connectivity is vital for establishing smart factories and enhancing overall productivity by creating a unified ecosystem.

Another significant aspect of the Siemens SPC3 is its focus on security. As cyber threats in industrial settings become increasingly sophisticated, Siemens prioritizes safeguarding user data and system integrity. The SPC3 incorporates advanced security features, including encryption and access control measures, to protect against unauthorized access and ensure data confidentiality.

Siemens has also emphasized ease of use in the SPC3. The interface is designed to be intuitive, allowing operators to navigate and configure the system effortlessly. Coupled with comprehensive software tools, users are empowered to implement changes swiftly while minimizing downtime.

In terms of energy efficiency, the SPC3 incorporates technologies that allow for optimized energy consumption, aligning with sustainability goals prevalent in today’s industries. By reducing energy waste, businesses not only lower operational costs but also contribute to environmental conservation.

In summary, Siemens SPC3 represents a significant advancement in industrial automation technology. Its high-performance processing, modular adaptability, advanced communication capabilities, robust security measures, and user-friendly design make it an ideal choice for businesses striving for efficiency and innovation in their operations. The SPC3 is more than just a control device; it is a comprehensive solution that meets the evolving demands of modern industries.