Siemens SPC3 manual Asynchronous Intel-Mode, Processor-Read-Timing, XRD XCS Xready, Xwr Xcs

Page 52

PROFIBUS Interface Center

SPC3

 

 

 

 

 

 

 

Asynchronous Intel-Mode, Processor-Read-Timing

AB(10..0)

 

VALID

 

 

 

 

20

21

22

 

 

 

DB(7..0)

 

 

 

Data Out

 

 

 

 

 

 

 

 

25

XRD

35

23

 

24

 

26

 

 

 

 

XCS

 

 

 

27

 

 

 

 

XREADY

 

 

28

30

(normal)

 

 

29

 

XREADY

 

 

 

 

 

 

 

(early)

 

 

 

 

 

 

 

 

34

 

 

 

 

XWR = log.'1'

Asynchronous Intel-Mode, Processor-Write-Timing

AB(10..0)

DB(7..0)

XWR

XCS

XREADY (normal)

XREADY (early)

VALID

20

22

Data In

 

31

32

33

26

23

27

36

 

30

28

29

34

37

XRD = log.'1'

8.5.4 Timing in the Synchronous Motorola Mode (E_Clock-Mode, for example, 68HC11) :

For a CPU clockline through the SPC3, the output clock pulse (CLKOUT2/4) must be 4 times larger than the E_CLOCK. That is, a clock pulse signal must be present at the CLK input that is at least 10 times larger than the desired system clock pulse (E_CLOCK). The Divider-Pin must be placed on <log. 0> (divider 4). This results in an E_CLOCK of 3MHz.

Page 50

V1.3

SPC3 Hardware Description

2003/04

 

Copyright (C) Siemens AG 2003. All rights reserved.

Image 52
Contents Simatic NET Page SIM Atic NET Profibus Interface Center SPC3 Hardware DescriptionVersions Release Date ChangesMode Register Status Register Interrupt Controller Watchdog TimerDPBuffer Structure Description of the DP Services DirectoryAsic Test 11.3 Diagnostics Processing from the System ViewPin Assignment Example for the RS 485 Interface SPC3 Introduction Function Overview Pin Description CmosCPD Cmos with pull down TTLt Schmitt trigger V1.3 Memory Area Distribution in the SPC3 Memory Allocation5FFH Segment Processor Parameters Latches/Register OCH 0DH Significance Write Access0EH 0FH Organizational Parameters RAM 1AH 1BH1CH 1DHMode Register Asic InterfaceDisstartcontrol Mode Register 1 Mode-REG1, writable STARTSPC3Exiting the Offline state EOIStatus Register Fdlindst Status Register Bit15 . .readableInterrupt Controller SPC3 IRR IMRDxout IMR IARWatchdog Timer Automatic Baud Rate IdentificationBaud Rate Monitoring Response Time MonitoringPROFIBUS-DP Interface DPBuffer StructureUart RAM Aux-Buffer ManagementSetSlaveAddress SAP55 Description of the DP ServicesSequence for the SetSlaveAddress Utility Parameter Data Structure SetParam SAP61Parameter Data Processing Sequence CheckConfig SAP62 SPC3SlaveDiagnosis SAP60 Diagnostics Processing SequenceSPC3 WriteReadData / DataExchange DefaultSAP Structure of the Diagnostics BufferWriting Outputs Reading Inputs UserWatchdogTimer GlobalControl SAP58ReadInputs SAP56 GetConfig SAP59ReadOutputs SAP57 Hardware Interface Universal Processor Bus InterfaceGeneral Description Bus Interface Unit BIUXINT/MO Mode Bus Interface V1.3Switching Diagram Principles Low Cost System with 80C32System X86-Mode SPC3 Application with the 80 CApplication with th 80 C Uart Interface SignalsAsic Test Technical Data Maximum Limit ValuesPermitted Operating Values DC-Specifikation of the I/O- DriversTabel 8.3 DC-Specifikation of the I/O- Drivers AC-Specification for the Output DriversCurrent Tabelle 8.5 Leakage current of the output drivers Timing Characteristics SYS Bus InterfaceClock pulse 48 Mhz Clock Pulse TimingReset Timing in the Synchronous C32-ModeST-Vers Min Max Unit TBDSynchronous Intel-Mode, Processor-Read-Timing Synchronous Intel-Mode, Processor-Write-TimingST-Vers Timing in the Asynchronous Intel Mode X86 ModeParameter Min Max Asynchronous Intel-Mode, Processor-Read-Timing XRD XCS XreadyAsynchronous Intel-Mode, Processor-Write-Timing XWR XCS4.1 74.2 Synchronous Motorola-Mode, Processor-Read-TimingSynchronous Motorola-Mode, Processor-Write-Timing Timing in the Asynchronous Motorola-Mode for example, 68HC16XCS Xdsack Asynchronous Motorola-Mode, Processor-Read-TimingAsynchronous Motorola-Mode, Processor-Write-Timing Serial Bus Interface Pulse 48 MHzHousing PQFP-44 Housing SPC3 Hardware Description Symbol Min Typ Max AMI-Vers 13.6513.90 14.15Profibus Interface Pin AssignmentRTS TXDExample for the RS 485 Interface SN65ALS1176Appendix AddressesProfibus User Organisation Technical contact person at ComDeC in GermanyGeneral Definition of Terms Ordering of ASICs10.3.1 SPC3 AMI 10.3.2 SPC3 STAppendix a Diagnostics Processing in Profibus DP Diagnostics Bits and Expanded DiagnosticsIntroduction StatdiagIdentifier Byte 7 has Etc Identifier Byte 0 has Diagnostics Processing from the System View Single DiagnosticsSimatic S5 / COM ET CombiAppendix B Useful Information Data format in the Siemens PLC SimaticPage Siemens Aktiengesellschaft

SPC3 specifications

Siemens SPC3 is a state-of-the-art solution designed to enhance industrial automation, providing businesses with a robust platform for managing complex processes efficiently. This device epitomizes Siemens' commitment to innovation, blending cutting-edge technology with user-friendly features to deliver optimized performance across various applications.

One of the standout features of the Siemens SPC3 is its advanced processing capabilities. Equipped with high-performance processors, it can handle various tasks simultaneously, ensuring seamless operation even in demanding environments. This performance is complemented by enhanced memory capacity, which allows for increased data handling and improved execution speed, crucial for real-time monitoring and control applications.

The Siemens SPC3 also integrates a modular design, enabling flexibility and scalability. This characteristic allows users to customize their systems according to specific operational needs, adding or removing components as required. This adaptability is particularly beneficial for businesses that aim to scale their operations without incurring the substantial costs associated with overhauling existing systems.

Furthermore, the SPC3 employs the latest communication technologies, ensuring interoperability with various devices and systems. It supports industry-standard protocols, facilitating efficient data exchange between components. This connectivity is vital for establishing smart factories and enhancing overall productivity by creating a unified ecosystem.

Another significant aspect of the Siemens SPC3 is its focus on security. As cyber threats in industrial settings become increasingly sophisticated, Siemens prioritizes safeguarding user data and system integrity. The SPC3 incorporates advanced security features, including encryption and access control measures, to protect against unauthorized access and ensure data confidentiality.

Siemens has also emphasized ease of use in the SPC3. The interface is designed to be intuitive, allowing operators to navigate and configure the system effortlessly. Coupled with comprehensive software tools, users are empowered to implement changes swiftly while minimizing downtime.

In terms of energy efficiency, the SPC3 incorporates technologies that allow for optimized energy consumption, aligning with sustainability goals prevalent in today’s industries. By reducing energy waste, businesses not only lower operational costs but also contribute to environmental conservation.

In summary, Siemens SPC3 represents a significant advancement in industrial automation technology. Its high-performance processing, modular adaptability, advanced communication capabilities, robust security measures, and user-friendly design make it an ideal choice for businesses striving for efficiency and innovation in their operations. The SPC3 is more than just a control device; it is a comprehensive solution that meets the evolving demands of modern industries.