Maxim MAX12527 manual Binary-to-Gray and Gray-to-Binary Code Conversion

Page 21

Dual, 65Msps, 12-Bit, IF/Baseband ADC

BINARY-TO-GRAY CODE CONVERSION

 

 

 

 

 

 

GRAY-TO-BINARY CODE CONVERSION

 

 

 

 

 

 

1) THE MOST SIGNIFICANT GRAY-CODE BIT IS THE SAME

 

 

 

1) THE MOST SIGNIFICANT BINARY BIT IS THE SAME AS THE

 

 

AS THE MOST SIGNIFICANT BINARY BIT.

 

 

 

 

 

 

MOST SIGNIFICANT GRAY-CODE BIT.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D11

 

 

D7

 

 

D3

 

 

D0

BIT POSITION

 

 

D11

 

 

D7

 

 

 

D3

 

 

D0

BIT POSITION

 

0

1

1

1

0

1

0

0

1

1

0

0

BINARY

 

0

1

0

0

1

1

1

0

1

0

1

0

GRAY CODE

 

0

 

 

 

 

 

 

 

 

 

 

 

GRAY CODE

 

0

 

 

 

 

 

 

 

 

 

 

 

BINARY

2) SUBSEQUENT GRAY-CODE BITS ARE FOUND ACCORDING

 

 

2) SUBSEQUENT BINARY BITS ARE FOUND ACCORDING TO

 

 

TO THE FOLLOWING EQUATION:

 

 

 

 

 

 

 

THE FOLLOWING EQUATION:

 

 

 

 

 

 

 

 

 

 

GRAYX = BINARYX +

BINARYX + 1

 

 

 

 

 

 

 

BINARYX = BINARYX+1

+

GRAYX

 

 

 

 

 

 

WHERE

+

IS THE EXCLUSIVE OR FUNCTION (SEE TRUTH

 

 

 

WHERE

+

IS THE EXCLUSIVE OR FUNCTION (SEE TRUTH

 

 

 

TABLE BELOW) AND X IS THE BIT POSITION:

 

 

 

 

 

TABLE BELOW) AND X IS THE BIT POSITION:

 

 

 

 

 

 

GRAY10 = BINARY10

+

BINARY11

 

 

 

 

 

 

 

BINARY10 = BINARY11

+

GRAY10

 

 

 

 

 

 

 

GRAY10 = 1 +

0

 

 

 

 

 

 

 

 

 

 

BINARY10 = 0

+ 1

 

 

 

 

 

 

 

 

 

 

GRAY10 = 1

 

 

 

 

 

 

 

 

 

 

 

BINARY10 = 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D11

 

 

D7

 

 

D3

 

 

D0

BIT POSITION

 

 

D11

 

 

D7

 

 

 

D3

 

 

D0

BIT POSITION

0

+

1

1

1

0

1

0

0

1

1

0

0

BINARY

0

 

 

1

0

0

1

1

1

0

1

0

1

0

GRAY CODE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

1

 

 

 

 

 

 

 

 

 

 

GRAY CODE

0

 

 

1

 

 

 

 

 

 

 

 

 

 

BINARY

3) REPEAT STEP 2 UNTIL COMPLETE:

 

 

 

 

 

 

 

3) REPEAT STEP 2 UNTIL COMPLETE:

 

 

 

 

 

 

 

 

GRAY9 = BINARY9 +

BINARY10

 

 

 

 

 

 

 

BINARY9 = BINARY10

+

GRAY9

 

 

 

 

 

 

 

GRAY9 = 1

+

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BINARY9 = 1

+ 0

 

 

 

 

 

 

 

 

 

 

GRAY9 = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BINARY9 = 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BIT POSITION

 

 

 

 

 

 

 

 

 

 

 

 

 

BIT POSITION

 

 

D11

 

 

D7

 

 

D3

 

 

D0

 

 

D11

 

 

D7

 

 

 

D3

 

 

D0

0

1

+

1

1

0

1

0

0

1

1

0

0

BINARY

0

1

 

0

0

1

1

1

0

1

0

1

0

GRAY CODE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

0

1

 

0

 

 

 

 

 

 

 

 

 

GRAY CODE

0

1

 

1

 

 

 

 

 

 

 

 

 

BINARY

4) THE FINAL GRAY-CODE CONVERSION IS:

 

 

 

 

 

4) THE FINAL BINARY CONVERSION IS:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D11

 

 

D7

 

 

D3

 

 

D0

BIT POSITION

 

 

D11

 

 

D7

 

 

 

D3

 

 

D0

BIT POSITION

 

0

1

1

1

0

1

0

0

1

1

0

0

BINARY

 

0

1

0

0

1

1

1

0

1

0

1

0

GRAY CODE

 

0

1

0

0

1

1

1

0

1

0

1

0

GRAY CODE

 

0

1

1

1

0

1

0

0

1

1

0

0

BINARY

 

 

EXCLUSIVE OR TRUTH TABLE

FIGURE 8 SHOWS THE GRAY-TO-BINARY AND BINARY-TO-GRAY

A

B

Y = A + B

CODE CONVERSION IN OFFSET BINARY FORMAT. THE OUTPUT

 

 

 

FORMAT OF THE MAX12527 IS TWO'S-COMPLEMENT BINARY,

0

0

0

HENCE EACH MSB OF THE TWO'S-COMPLEMENT OUTPUT CODE

0

1

1

MUST BE INSERTED TO REFLECT TRUE OFFSET BINARY FORMAT.

1

0

1

 

 

1

1

0

Figure 8. Binary-to-Gray and Gray-to-Binary Code Conversion

MAX12527

______________________________________________________________________________________ 21

Image 21
Contents General Description FeaturesApplications Ordering InformationDynamic Characteristics differential inputs Parameter Symbol Conditions MIN TYP MAX Units DC AccuracyAnalog Input INAP, INAN, INBP, Inbn Conversion RateParameter Symbol Conditions MIN TYP MAX Units Interchannel Characteristics Internal Reference RefoutVcom Clock Inputs CLKP, Clkn Parameter Symbol Conditions MIN TYPDigital Inputs DIFFCLK/ SECLK, G/ T, PD, DIV2, DIV4 Digital Outputs D0A-D11A, D0B-D11B, DORA, DORB, DAVD0A-D11A, Dora Power RequirementsOvdd DIFFCLK/SECLK = GNDTiming Characteristics Figure Typical Operating CharacteristicsFFT Plot 16,384-POINT Data Record FFT Plot 32,768-POINT Data RecordMAX12527 THD, Sfdr vs. Clock Speed fIN = 70MHz, AIN = -0.5dBFS FCLK = 65.00352MHz, fIN = 175MHz FIN = 70MHz, AIN = -0.5dBFSTHD, Sfdr vs. Clock Duty Cycle FIN = 70MHz, AIN = -0.5dBFS SNR, Sinad vs. Temperature fIN = 175MHz, AIN = -0.5dBFS Pin Description PIN Name FunctionSame side of the PC board D1B D0BD2B D3BShref Detailed DescriptionRefout RefinFunctional Diagram Reference Mode Reference ConfigurationsAnalog Inputs and Input Track-and-Hold T/H Amplifier Reference OutputClock Input and Clock Control Lines Clock Duty-Cycle Equalizer DIV4 DIV2 Function System Timing RequirementsD11A-D0A Equivalent BinaryDOR D11A-D0A D11B-D0B CODE10Vrefp Vrefn Power-Down InputBinary-to-Gray and Gray-to-Binary Code Conversion Using Transformer Coupling Single-Ended AC-Coupled Input SignalApplications Information Unbuffered External Reference Drives Multiple ADCs Buffered External Reference Drives Multiple ADCsMAX12527 Grounding, Bypassing, and Board LayoutParameter Definitions Full-Power Bandwidth Aperture DelayOverdrive Recovery Time Total Harmonic Distortion THDPin Configuration Gain MatchingOffset Matching 68L QFN THIN.EPS Package Information