Xantrex Technology PS3.0, PS2.5 installation and operation guide Installation Overview

Page 56
” 6 /1 5

Installation Overview

4.Select an appropriate mounting location. The Prosine must be mounted vertically on a bulkhead or wall with the AC and DC connectors on the bottom. The Prosine is a solid- state electronic device and must be located in an appropriate environment. (Refer to “Where to Install the Prosine Inverter/Charger‚” on page 42.

5.Configure the Prosine inverter/charger using the DIP switches on the side of the unit. See “Section 3: Configuration‚” on page 25 and following for details.

6.Remove the cover over the AC connector block. Install two, one-inch cable clamps (strain reliefs) in the holes in the cover mounting bracket.

7.Locate the mounting screw locations and pre-drill a pilot hole for each location. For the Prosine 3.0, locate the mounting holes using the mounting brackets provided with the unit, then install the mounting brackets on the Prosine using the fasteners provided.

8.Attach the Prosine inverter/charger to the bulkhead or wall. Use #12 or #14 pan-head wood or sheet metal screws to secure the inverter/charger to the framing behind the wall or bulkhead. Alternatively, use nut inserts and 1/4-20 machine screws.

9.Route the AC input cable through the left cable clamp on the bottom of the inverter/ charger. Strip about two inches of the exterior insulation from the AC cable and separate the three wires. Strip 5/16-inch of insulation from each of the three AC conductors within the AC cable.

10.Insert the AC Line (HOT)

conductor (black insulation) into

the opening at the top of the AC input connector labeled LINE;

insert the Ground conductor (green insulation or bare) into the AC Input connector labeled GND; and insert the Neutral conductor

(white insulation) into the AC

Input connector labeled NEUTRAL. Tighten the screw in the connectors to min. 21 inch-pounds.

11.Route the AC Output cable through the right cable clamp on the bottom of the inverter. Strip about three-inches of the outside insulator from the AC cable and separate the three wires inside. Strip 5/16-inch of insulation from each wire in the AC output cable.

12. Insert the AC Output line, ground, and neutral

conductors into the top openings of the AC output connector block labeled LINE, GND, and NEUTRAL respectively. There are two each connectors on the AC OUTPUT connector block labeled LINE, GND, and NEUTRAL. The two LINE

output connectors are bonded

together; as are the two GND output connectors, and the two NEUTRAL output connectors. The second set is for the GFCI receptacle option. Tighten the screw in each connector to min. 21 inch-pounds.

38

Prosine Installation & Operation Guide

Image 56
Contents PS2.5 PS3.0 Page Installation and Operation Guide ProsineTMDate and Revision Important Safety Instructions Precautions When Working with Batteries Materials List System / Installation Information Inverter/Charger Components Prosine 2.5/3.0 Installation & Operation Guide Warranty Disclaimer ProductReturn Material Authorization Policy Return Procedure Contents Configuration Operation Appendix B Inverter Applications Features Battery Charger FeaturesInverter Features Features Inverter Features Accessory Jacks Controls and IndicatorsDIP Switch Panel AC Terminals & Covers AC Bypass SelectorDC Terminals & Covers Standard LED Control Panel Standard LED Control Panel DisplayBattery Status Indicator Faults Indicators & Reset ButtonInverter Status Indicators and On/Off Button Power Indicator Charger Status Indicator and On/Off ButtonMounting and Installing the LED Control Panel ACS Control Panel Liquid Crystal Display Control ButtonsMenu Navigation Procedure ACS Menu TreeAC Information Menu Battery Information Menu Inverter Information MenuCharger Information Menu Charger StatusSystem Information Menu Version Information Menu Faults Display & Reset Button Inverter Status Indicators and On/Off ButtonPower Indicator Charger Status Indicator and On/Off ButtonMounting and Installing the ACS Control Panel Battery Temperature Sensor Battery Temperature SensorBattery Temperature Sensor Configuration DIP Switch SettingsBattery Type Battery TemperatureNot used Load SenseSwitch 2 Not Used RatingAmps CurrentDraw Switch Breaker MaxACSwitch 5, 6, 7 12V 24VInstaller Configuration Items ACS ConfigurationUser Configuration Items ACS Configuration Considerations AC Shorepower Configuration Battery Size Battery Temperature Battery ConfigurationBattery Type Battery Info Type Flooded Inverter Configuration Load Sense TURN- on POWER1401 WCharger Configuration High and Low Voltage Alarms and CutoffsEqualize is NOW Disabled Equalize is NOW Enabled System Configuration Installation Overview Inverter/Charger InstallationSafety Instructions Installation Overview Inverter/Charger Installation Designing the Installation Gfci Models Where to Install the Prosine Inverter/Charger Tools and Materials RequiredAmbient temperature deg. C Mounting the Prosine Inverter/Charger Recommended Wire Size vs Breaker Rating AC and DC Wiring SeparationAC Cabling AC Disconnect and Overload ProtectionDC Over-Current Protection Wire Size Fuse SizeDC Cabling Battery Cable Routing DC DisconnectDC Cabling Connections 10 ft 15 ft 20 ft 30 ftDC Cabling Procedure Recommended DC Cable Sizes For Proper OperationMounting Options Connecting the Battery Temperature SensorDC Grounding Mounting to the Negative Battery Terminal BTS Attached to Negative Battery TerminalMounting to the Side of the Battery Case BTS Attached to Battery CaseTypical System Diagrams Residential Backup SystemRecreational Vehicle System Residential Solar and Wind System Operation Prosine Inverter Load Sense Mode Operating Limits for Inverter OperationProsine Operating Voltage Limits Operating Limits for Inverter Operation Multistage Charging Charging ProfileBulk Charge Absorption ChargeFloat Charge Equalization ChargeEqualization Procedure Operation in Charger ModeOperation in Equalization Mode Adjustable Charger Mode Settings Battery Charging Times Operating Limits for Charger OperationBattery Charging and Equalization Guide Model Flooded Comments GelAGM Operating Limits for Charger Operation Types BatteriesTerminology Starting Batteries Deep-Cycle BatteriesTemperature Sealed Gel CellEnvironment LocationBattery Bank Sizing Estimating Battery RequirementsBattery Bank Sizing Example & Worksheet Battery Sizing ExampleBattery Sizing Worksheet Monthly Battery Maintenance Cleaning BatteriesPreparation AttireSupplies ProcedureEquipment Cabling & Hook-up Configurations CablesParallel Connection 50 AhSeries Connection 100 AhSeries Parallel Connection 24VCabling & Hook-up Configurations Volt in parenthesis Appendix a SpecificationsProsine 2.5 12-volt Prosine 3.0 12-volt Charger Output Voltages Prosine 2.5 12-volt Prosine 3.0 12-volt Volt in parenthesisProsine 2.5/3.0 Chassis Dimensions Prosine 2.5/3.0 Chassis Dimensions with Brackets Prosine 2.5 Efficiency 120Vac, 12Vdc model Prosine 2.5 Efficiency CurveProsine Over-Current Shutdown Response Prosine 2.5/3.0 Installation & Operation Guide Problem Loads in Load Sense Appendix B Inverter ApplicationsResistive Loads Inductive LoadsOther Problem Loads Appendix C Troubleshooting What to do if a problem occursAdvanced Control System ACS Error Code Displays and What They MeanControl Panel Error Code Table Error Description of Fault Possible Cause Solution CodeError Code Table Appendix C Troubleshooting Error Description of Fault Possible Cause Solution Code Error Description of Fault Possible Cause Solution Code Error Code Table Index Index Gases, battery venting, 50 gel-cell,30 Index Index 100 Page 445-0096-01-01

PS3.0, PS2.5 specifications

Xantrex Technology has made significant strides in the power electronics sector with the introduction of their PS2.5 and PS3.0 inverter models. These inverters are designed primarily for solar energy applications, offering reliable and efficient power conversion for residential and commercial solar installations. The PS series stands out in the market due to its advanced features, innovative technologies, and user-friendly characteristics.

One of the main features of the Xantrex PS2.5 and PS3.0 inverters is their high efficiency rating, typically above 97%. This means that a minimal amount of energy is lost during conversion, allowing users to maximize their solar energy utilization. Additionally, these inverters come with a wide input voltage range, making them versatile and capable of handling various solar panel configurations.

Both models are equipped with advanced MPPT (Maximum Power Point Tracking) technology. This feature optimizes the energy output from solar panels by constantly adjusting the operating point to ensure maximum power is extracted, even in variable weather conditions or partial shading. This capability significantly enhances the overall energy harvest from solar systems.

Another notable characteristic is their compact and lightweight design, which facilitates easy installation and integration into existing systems. The inverters are also designed with robust thermal management solutions, ensuring they operate effectively even in high-temperature environments. This durability extends their lifespan and increases reliability, critical factors for any solar installation.

Xantrex has also prioritized user experience with the PS2.5 and PS3.0 models by providing a built-in monitoring system. Users can access real-time data on energy production, performance metrics, and system status through a user-friendly interface. This connectivity allows for quick troubleshooting and maintenance, thus enhancing the overall efficiency of solar energy systems.

Safety is paramount in the design of these inverters. They meet stringent international safety standards and come equipped with comprehensive protection features, including over-voltage, under-voltage, and short-circuit protection. This ensures the inverter operates safely, protecting both the user and the connected solar array.

In summary, Xantrex Technology's PS2.5 and PS3.0 inverters are engineered with cutting-edge features and technologies that cater to the evolving needs of solar energy users. Their efficiency, adaptability, and focus on safety make them an excellent choice for those looking to invest in renewable energy solutions. As the demand for sustainable energy continues to rise, Xantrex is poised to play a significant role in the market with these innovative inverter solutions.