Energy Tech Laboratories Modular Direct Fired Heaters Installation, Mechanical, Site Preparation

Page 4
CLEARANCES
The top, back, and front surfaces of this heater may not be installed less than 6” from combustible materials. The heater base may be installed on combustible surfaces. Allow 24” minimum service clearance on both sides of this heater.

INSTALLATION

It is imperative that this unit is installed and operated with the designed airflow, gas, and electrical supply in accordance with this manual. If there are any questions about any items, please call the service department at 1-866-784-6900for warranty and technical support issues.

Mechanical

WARNING: DO NOT RAISE VENTILATOR BY THE INTAKE HOOD, BLOWER OR MOTOR SHAFT, OR BEARINGS – USE LIFTING LUGS PROVIDED OR A SLING

Site Preparation

1. Provide clearance around installation site to safely rig and lift equipment into its final position. Supports must adequately support equipment. Refer to manufacturer’s estimated weights.

2. Consider general service and installation space when locating unit.

3. Locate unit close to the space it will serve to reduce long, twisted duct runs.

4. Do not allow air intake to face prevailing winds. Support unit above ground or at roof level high enough to prevent precipitation from being drawn into its inlet. The inlet must also be located at least 10 feet away from any exhaust

vents. The heater inlet shall be located in accordance with the applicable building code provisions for ventilation air. All air to the heater must be ducted from the outdoors. Recirculation of room air is not permitted. If in doubt regarding the application, consult the manufacturer.

Assembly

Intakes and curbs are shipped unassembled. Upon unit arrival, follow the following procedure to assemble the intake to the heater:

1. Apply silicone or weather-proof gasket on the back side of the flanges of the intake hood or v-bank intake.

2. Screw the flanges of the intake hood or v- bank to the unit with the supplied sheet metal screws. If the unit is a modular unit with a v-bank or evaporative cooler section, the v-bank or evaporative cooler will bolt to the heater with the bolts provided.

Curb and Ductwork

This fan was specified for a specific CFM and static pressure. The ductwork attached to this unit will significantly affect the airflow performance. Flexible ductwork and square elbows should not be used. Also, transitions and turns in ductwork near the fan outlet will cause system effect and will drastically increase the static pressure and reduce airflow. The chart below shows the minimum fan outlet duct sizes and straight lengths recommended for optimal fan performance. Follow SMACNA guides and recommendations for the remaining duct run. Fans designed for rooftop installation should be installed on a prefabricated or factory built roof curb. Follow curb manufacturer’s instructions for proper curb installation. The unit should be installed on a curb and/or rail elevated not less than 20” above any surface. Be sure duct connection and fan outlet are properly aligned and sealed. Secure fan to curb

4

Image 4
Contents Installation, Operation, and Maintenance Manual Table of Contents Warranty Installation AssemblyMechanical Site PreparationRoof Mount Installation Installation with Exhaust Fan Recommended Supply Ductwork SizesPage Gas Connection Sizes GasGas Pressure Table Electrical Copper Wire AmpacityMotorized Intake Damper Remote Control Panel Fan to Building Wiring ConnectionOperation Start UpMain Burner Adjustment Yes Adjust pilot flame Lock unit into High fire Heater Start Up SummaryFinal Start Up Procedure Maximum RPM and HP Chart Pulley Adjustment IllustrationPulley Adjustment Setscrew TorquePulley Combination Chart 10 20 IN. BlowerFlame Safety Control Flame Safety Controller DC Flame SignalAir Flow Switch Sequence of OperationModulating Gas System Maxitrol Amplifier High Temperature LimitOperation Summary Blower Switch Optional Remote Panel CircuitComponents Remote Panel Option Troubleshooting Airflow Troubleshooting ChartBurner Troubleshooting Chart Proper Spark GapRemote Panel Troubleshooting Chart Light Indication Condition Possible CauseTroubleshooting Flowcharts Nothing HappensFlame Safety Service Guide Flame Safety Service Guide Maintenance General MaintenanceFilter Quantity Chart Weeks after startupEvery 3 months YearlyStart-Up and Maintenance Documentation Maintenance RecordFactory Service Department Job Information

Modular Direct Fired Heaters specifications

Energy Tech Laboratories has established itself as a leader in the development of innovative modular direct fired heaters, designed to meet the evolving demands of industries that require efficient and effective heating solutions. These heaters are engineered to offer versatility, reliability, and enhanced performance, making them suitable for a broad range of applications.

One of the standout features of Energy Tech Laboratories' modular direct fired heaters is their modular design. This allows for easy scalability and customization, enabling users to adjust the heating capacity according to specific requirements. The modular aspect also facilitates straightforward installation and maintenance, reducing downtime and operational costs.

The heaters utilize advanced combustion technology that optimizes fuel consumption while minimizing emissions. This ensures not only a cost-effective operation but also compliance with environmental regulations. By combining high thermal efficiency with a low carbon footprint, these heaters contribute to sustainable energy practices.

In addition to their efficient combustion system, Energy Tech Laboratories incorporates state-of-the-art control technologies in their heaters. These systems allow for precise temperature regulation and can be integrated with existing Building Management Systems (BMS) for enhanced monitoring and control. Users can benefit from real-time data and analytics, which help in diagnosing potential issues and optimizing performance.

Durability is another characteristic that sets these heaters apart. Constructed with high-quality materials, they are designed to withstand harsh industrial conditions, ensuring a long service life. The robust design minimizes the likelihood of breakdowns, which is critical for industries that rely on continuous operation.

Moreover, Energy Tech Laboratories emphasizes safety in the design of their modular direct fired heaters. Equipped with multiple safety features such as flame detection, gas leak detection, and emergency shutdown systems, these heaters are built to operate within stringent safety standards.

The flexibility of these heaters makes them suitable for various sectors, including oil and gas, manufacturing, and construction. Their ability to provide direct heat quickly and efficiently makes them ideal for processes that require consistent temperature control.

In conclusion, Energy Tech Laboratories' modular direct fired heaters represent an advanced solution for today’s energy needs. With their modular design, advanced combustion technologies, and focus on safety and durability, these heaters stand out as a preferred choice for industries seeking reliable and efficient heating solutions. Their commitment to innovation and sustainability positions them as a front-runner in the energy technology sector.