Agilent Technologies 6050A Protection Features, Status Reporting, Resetting Latched Protection

Page 28

The SYST:ERR? query (or key) reads back the errors in the order in which they occurred (the error queue can hold up to 30 entries). Once the error is read back it is removed from the list. A value 0 indicates there is no error; and 0 will be

returned when all errors in the list have been read. Pressing the key displays just the error number. The SYST:ERR? query returns the error number and a short description of the error to the computer. Refer to Chapter 6 in the Agilent Electronic Loads Programming Reference Guide.

Local programming errors generated by front panel operations are not put into the error list, but are immediately put on the Electronic Load’s front panel display; e.g., ’OUT OF RANGE’.

Status Reporting

The Electronic Load incorporates a status reporting capability. Various status conditions within the Electronic Load can be reported using this capability. The user determines which condition(s) will be reported. Chapter 5 of the Agilent Electronic Loads Programming Reference Guide describes each of the status registers in the Electronic Load. (These registers, including the channel status registers, are all maintained in the mainframe.) Notice that the same information is available in both the channel status and questionable status registers, but the channel registers are organized by channel, and the questionable registers are organized by fault. Therefore, depending on which channels and/or faults are most critical in your application, you can use one branch to localize selected faults quickly, and use the other branch for broader fault reporting. By knowing that only a particular fault (questionable branch) or a particular channel (channel branch) is enabled to initiate a service request, you can eliminate the need to read one or more registers to locate a fault.

Protection Features

Each load module includes the following protection features:

Overvoltage

Overcurrent (hardware and software)

Overpower (hardware and software)

Overtemperature

Reverse Voltage

The appropriate bit(s) in the mainframe’s status registers are set when any of the above protection features are active. Also, the Prot annunciator comes on and the front-panel alphanumeric display indicates which condition(s) have been detected. For example, if an overtemperature (OT) condition has been detected causing a module’s input to be turned off (protection shutdown, PS), the display will indicate "PS OT".

Resetting Latched Protection

All of the protection features latch (remain set) when they are tripped, except for the hardware overcurrent and reverse voltage. The latched protection features can be reset via the GPIB (*RST or INP:PROT:CLE commands) or at the front

panel (key). Of course, the condition that caused the protection feature to trip must be removed or it will trip again as soon as it is reset.

To protect the Electronic Load from possible damage, the input voltage must not exceed the maximum input voltage rating specified in the module-specific pages supplied with each module. Never apply the ac line voltage to a module’s input binding posts.

28 Operation Overview

Image 28
Contents Operating Manual Certification Safety Summary Safety Summary Symbol DescriptionHerstellerbescheinigung Manufacturer’s DeclarationPrinting History Page Table of Contents Installation Local OperationRemote Operation Considerations for Operating in Constant Resistance ModeCalibration Page Options What’s In This ManualGeneral Information Safety Requirements SpecificationsDimensions Page Introduction Operation OverviewFront Panel Description Local/Remote ControlRemote Programming Programmable Features Extended Power OperationModes of Operation Immediate Current Level Constant Current CC ModeTriggered Current Level Constant Resistance CR Mode Transient Current LevelSoftware Current Limit Slew RateConstant Voltage CV Mode Immediate Resistance LevelTriggered Resistance Level Transient Resistance LevelTransient Voltage Level Triggered Voltage LevelTransient Operation Continuous Transient Operation Hpsl Command DescriptionPulsed Transient Operation Selects pulsed transient operation Selects the external trigger inputSets pulse width to 1 millisecond Triggering a preset level Selects the external trigger input sourceSelects toggled operation Triggering a transient pulseSlew Rate And Minimum Transition Time Risetime Transition LimitationInput Current, Voltage, and Power Measurement Transition Times and Slew Rates Short On/OffReading Remote Programming Errors Saving and Recalling SettingsInput On/Off Resetting Latched Protection Protection FeaturesStatus Reporting Overvoltage OverpowerOvercurrent Control Connector OvertemperatureReverse Voltage Remote SensingFault External Programming InputPage Installing The Modules InspectionPower Cord Configurations Procedure Installing The Mainframes Channel NumberCooling Turn-On CheckoutRack Mounting Line Voltage Switches Changing Line VoltageGpib Errors Channel Errors DescriptionTurn-On/Selftest Display DescriptionPower Test Controller ConnectionRear Panel Connectors and Switches Wire Size Strip backGpib Address AWGInput Binding Post Control Connector Sense SwitchPins Al and A2 +Sand -SIM and VM Com pin A3Wiring Considerations Trigger ConnectorApplication Connections Stranded Copper Wire Ampere Capacity Wire Size AmpacityLocal Sense Connections Remote Sense ConnectionsMaximum Wire Lengths to Limit Voltage Drops Zero-Volt Loading Connections12. Local Sensing 14. Parallel Operation Page Local Operation Local OperationControls and Indicators Description Chan Keys Function Keys Local Control Overview Using The Chan Keys Using The Function Keys Selecting the ChannelIdentifying the Selected Channel Turning the Input On/OffRecommended Programming Sequence Setting the Mode of Operation Setting CC ValuesProgramming Ranges ExamplesSetting CR Values Examples Setting CV Values Programming RangeTransient Operation Shorting The Input Setting The Gpib Address Using The System KeysDisplaying Error Codes Changing Wake-up Settings Recalling the Factory Default ValuesPage Enter/Output Statements Gpib AddressOutput EnterSending a Remote Command Selecting a ChannelGetting Data Back Output 705 MeascurrRemote Programming Commands CC Mode Example CV Mode ExampleOutput 705INPUT on Output 705MEASCURR? Output 705 Chan 2INPUT OFF Output 705MODEVOLTRemote Programming Flowchart Sheet Remote Programming Flowchart Sheet CR Mode Example Output 705INPUT on Output 705MEASPOW?Continuous Transient Operation Example Output 705CHAN 2INPUT OFF Output 705MODECURRSynchronous Toggled Transient Operation Example Pulsed Transient Operation ExampleOutput 705CHAN 1INPUT OFF Output 705MODEVOLT Output 705 Trigsour TIM Page Equipment Required CalibrationCalibration Commands CharacteristicsEquipment Required for Calibration Recommended ModelCalibration Flowcharts Example ProgramsCalibration Flowchart for a Modules Calibration Flowchart for a Modules Calibration Flowchart for a Modules Pause Program Listing for a ModulesPause Subend Print Voltage Calibration END if ElseLine 610 Set low calibration point Calibration Flowchart for B Modules Calibration Flowchart for B Modules Calibration Flowchart for B Modules Program Listing for B Modules Clear Screen Print TABXY10,10CALIBRATION DoneWait 1260 If Flag then 1270 Output @LdRESReshipt 1280 Considerations For Operating In Constant Resistance Mode Considerations For Operating In Constant Resistance ModeConsiderations For Operating In Constant Resistance Mode Index IndexIndex Index 19, 20, 21 Agilent Sales and Support Offices Agilent Sales and Support OfficesManual Updates

6051A, 6050A specifications

Agilent Technologies has long been a leader in providing high-performance test and measurement solutions, and the 6050A and 6051A models exemplify this commitment to quality and innovation. The 6050A and 6051A are versatile signal generators that cater to a diverse range of applications, including research and development, manufacturing, and education, making them essential tools in laboratories and production environments.

The Agilent 6050A is a high-performance RF signal generator known for its frequency range capabilities, which span from 100 kHz to 20 GHz. It offers exceptional phase noise performance and low harmonic distortion, making it ideal for applications that require high signal integrity. The device supports various modulation formats, including AM, FM, and pulse modulation, allowing users to generate a wide range of test signals to simulate real-world conditions.

The 6051A builds upon the robust features of the 6050A with enhanced specifications and additional functionalities. It features a larger frequency modulation bandwidth, pushing the envelope for applications requiring more complex signal generation. The 6051A showcases a superior output power range, ensuring that test signals can be reliably produced at varying power levels. This model also includes advanced output control options that allow for precise signal manipulation, making it particularly suited for testing amplifiers and other RF components.

Both models share core technologies that ensure reliable performance, such as direct digital synthesis (DDS) and phase-locked loop (PLL) architectures. These technologies contribute to the exceptional frequency stability and accuracy that engineers and scientists have come to rely on. Additionally, the user-friendly interface integrated into both models simplifies operation and allows for quick configuration changes, facilitating efficient research and testing workflows.

With comprehensive connectivity options, including GPIB, USB, and Ethernet, the 6050A and 6051A can easily integrate into automated test environments. Their reliability, performance, and flexibility make them a perfect choice for those looking to advance their testing capabilities, whether in academic research, product development, or quality assurance in manufacturing.

In summary, the Agilent Technologies 6050A and 6051A signal generators are powerful tools designed to meet the demands of modern RF testing. Their advanced features, paired with Agilent’s reputation for quality and precision, make them invaluable assets in any engineering or research portfolio. Whether you require sophisticated signal generation for prototype testing or educational purposes, these models will deliver the performance needed to support your objectives.