Agilent Technologies 6051A, 6050A manual Transient Current Level, Software Current Limit, Slew Rate

Page 19

Electronic Load are described later in this chapter. The Electronic Load has a status reporting capability to keep track of pending triggers and other operating conditions. The status reporting capability is described in detail in the Agilent Electronic Loads Programming Reference Guide.

Transient Current Level

The transient current level can be set at the front panel ( , and ENTRY keys) or via the GPIB

(CURR:TLEV command). The transient current level determines the higher current level when transient operation (described later in this chapter) is turned on. The module input will switch between the main level and the transient level when transient operation is turned on.

Software Current Limit

The Electronic Load allows the user to set a current limit (0 to 102% of full scale) for each module via the GPIB

(CURR:PROT command) which will shut down the input if the current limit is exceeded beyond a programmable time delay. Note that the software current limit is in effect for any mode of operation (not just the CC mode). The software current limit feature is described later in this chapter under Protection Features.

Slew Rate

Slew rate determines the rate at which the current input to a module changes to a new programmed value. Slew rate can be

set at the front panel ( , and ENTRY keys) or via the GPIB (CURR:SLEW command). This slew rate remains in effect for the immediate, triggered, and transient level changes previously described.

There are 12 discrete current slew rates within each slewrate range. Any slew rate value can be sent to a module (there are no upper and lower limits that would cause an error), and a module will automatically select one of the 12 rates that is closest to the programmed value. The slew rate is rescaled to the closest fit in the 1-of-12 discrete steps if the

current range is changed.

Constant Resistance (CR) Mode

In this mode, the module will sink a current linearly proportional to the input voltage in accordance with the programmed

resistance (see Figure 2-3). The CR mode can be set at the front panel ( , and keys) or via the GPIB (MODE:RES command). The CR mode parameters are described in the following paragraphs (see also Appendix A).

Figure 2-3. Constant Resistance Mode

Operation Overview 19

Image 19
Contents Operating Manual Certification Safety Summary Manufacturer’s Declaration Safety SummarySymbol Description HerstellerbescheinigungPrinting History Page Table of Contents Local Operation InstallationRemote Operation Considerations for Operating in Constant Resistance ModeCalibration Page Options What’s In This ManualGeneral Information Specifications Safety RequirementsDimensions Page Operation Overview IntroductionFront Panel Description Local/Remote ControlRemote Programming Programmable Features Extended Power OperationModes of Operation Immediate Current Level Constant Current CC ModeTriggered Current Level Slew Rate Constant Resistance CR ModeTransient Current Level Software Current LimitTransient Resistance Level Constant Voltage CV ModeImmediate Resistance Level Triggered Resistance LevelTransient Voltage Level Triggered Voltage LevelTransient Operation Continuous Transient Operation Hpsl Command DescriptionPulsed Transient Operation Selects pulsed transient operation Selects the external trigger inputSets pulse width to 1 millisecond Triggering a transient pulse Triggering a preset levelSelects the external trigger input source Selects toggled operationRisetime Transition Limitation Slew Rate And Minimum Transition TimeTransition Times and Slew Rates Short On/Off Input Current, Voltage, and Power MeasurementReading Remote Programming Errors Saving and Recalling SettingsInput On/Off Resetting Latched Protection Protection FeaturesStatus Reporting Overvoltage OverpowerOvercurrent Remote Sensing Control ConnectorOvertemperature Reverse VoltageExternal Programming Input FaultPage Inspection Installing The ModulesPower Cord Configurations Procedure Channel Number Installing The MainframesCooling Turn-On CheckoutRack Mounting Changing Line Voltage Line Voltage SwitchesDisplay Description Gpib ErrorsChannel Errors Description Turn-On/SelftestController Connection Power TestAWG Rear Panel Connectors and SwitchesWire Size Strip back Gpib AddressSense Switch Input Binding Post Control ConnectorCom pin A3 Pins Al and A2+Sand -S IM and VMWiring Considerations Trigger ConnectorApplication Connections Remote Sense Connections Stranded Copper Wire Ampere Capacity Wire SizeAmpacity Local Sense ConnectionsZero-Volt Loading Connections Maximum Wire Lengths to Limit Voltage Drops12. Local Sensing 14. Parallel Operation Page Local Operation Local OperationControls and Indicators Description Chan Keys Function Keys Local Control Overview Using The Chan Keys Turning the Input On/Off Using The Function KeysSelecting the Channel Identifying the Selected ChannelRecommended Programming Sequence Examples Setting the Mode of OperationSetting CC Values Programming RangesSetting CR Values Examples Programming Range Setting CV ValuesTransient Operation Shorting The Input Setting The Gpib Address Using The System KeysDisplaying Error Codes Recalling the Factory Default Values Changing Wake-up SettingsPage Enter Enter/Output StatementsGpib Address OutputOutput 705 Meascurr Sending a Remote CommandSelecting a Channel Getting Data BackRemote Programming Commands Output 705 Chan 2INPUT OFF Output 705MODEVOLT CC Mode ExampleCV Mode Example Output 705INPUT on Output 705MEASCURR?Remote Programming Flowchart Sheet Remote Programming Flowchart Sheet Output 705CHAN 2INPUT OFF Output 705MODECURR CR Mode ExampleOutput 705INPUT on Output 705MEASPOW? Continuous Transient Operation ExampleSynchronous Toggled Transient Operation Example Pulsed Transient Operation ExampleOutput 705CHAN 1INPUT OFF Output 705MODEVOLT Output 705 Trigsour TIM Page Calibration Equipment RequiredRecommended Model Calibration CommandsCharacteristics Equipment Required for CalibrationExample Programs Calibration FlowchartsCalibration Flowchart for a Modules Calibration Flowchart for a Modules Calibration Flowchart for a Modules Pause Program Listing for a ModulesPause Subend Print Voltage Calibration END if ElseLine 610 Set low calibration point Calibration Flowchart for B Modules Calibration Flowchart for B Modules Calibration Flowchart for B Modules Clear Screen Print TABXY10,10CALIBRATION Done Program Listing for B ModulesWait 1260 If Flag then 1270 Output @LdRESReshipt 1280 Considerations For Operating In Constant Resistance Mode Considerations For Operating In Constant Resistance ModeConsiderations For Operating In Constant Resistance Mode Index IndexIndex Index 19, 20, 21 Agilent Sales and Support Offices Agilent Sales and Support OfficesManual Updates

6051A, 6050A specifications

Agilent Technologies has long been a leader in providing high-performance test and measurement solutions, and the 6050A and 6051A models exemplify this commitment to quality and innovation. The 6050A and 6051A are versatile signal generators that cater to a diverse range of applications, including research and development, manufacturing, and education, making them essential tools in laboratories and production environments.

The Agilent 6050A is a high-performance RF signal generator known for its frequency range capabilities, which span from 100 kHz to 20 GHz. It offers exceptional phase noise performance and low harmonic distortion, making it ideal for applications that require high signal integrity. The device supports various modulation formats, including AM, FM, and pulse modulation, allowing users to generate a wide range of test signals to simulate real-world conditions.

The 6051A builds upon the robust features of the 6050A with enhanced specifications and additional functionalities. It features a larger frequency modulation bandwidth, pushing the envelope for applications requiring more complex signal generation. The 6051A showcases a superior output power range, ensuring that test signals can be reliably produced at varying power levels. This model also includes advanced output control options that allow for precise signal manipulation, making it particularly suited for testing amplifiers and other RF components.

Both models share core technologies that ensure reliable performance, such as direct digital synthesis (DDS) and phase-locked loop (PLL) architectures. These technologies contribute to the exceptional frequency stability and accuracy that engineers and scientists have come to rely on. Additionally, the user-friendly interface integrated into both models simplifies operation and allows for quick configuration changes, facilitating efficient research and testing workflows.

With comprehensive connectivity options, including GPIB, USB, and Ethernet, the 6050A and 6051A can easily integrate into automated test environments. Their reliability, performance, and flexibility make them a perfect choice for those looking to advance their testing capabilities, whether in academic research, product development, or quality assurance in manufacturing.

In summary, the Agilent Technologies 6050A and 6051A signal generators are powerful tools designed to meet the demands of modern RF testing. Their advanced features, paired with Agilent’s reputation for quality and precision, make them invaluable assets in any engineering or research portfolio. Whether you require sophisticated signal generation for prototype testing or educational purposes, these models will deliver the performance needed to support your objectives.