Agilent Technologies 6051A, 6050A manual Introduction, Operation Overview

Page 15

2

Operation Overview

Introduction

The Agilent 6050A and Agilent 6051A Multiple Input Electronic Load Mainframes are used for design, manufacturing, and evaluation of dc power supplies, batteries, and power components. Other applications include use as a power circuit breaker or crowbar, high-current function or pulse generator, fuel-cell and photovoltaic cell test, and de-energizing superconducting magnets.

The mainframe contains six (two) slots for load modules. Load modules occupy either 1 or 2 slots, depending on the power rating of the module. The mainframe can dissipate up to 300 watts per slot, to a total of 1800 (600) watts for a fully loaded mainframe. An individual module may have either 1 or 2 channels, each of which has its own channel number. Each module contains its own input connectors. The mainframe contains a processor, GPIB connector and interface circuits, trigger circuits, front-panel keypad and display, and other circuits common to all the load modules.

Each module can operate independently in constant current (CC) mode, constant voltage (CV) mode , or constant resistance (CR) mode. In addition, each input can be turned on or off (open circuit) or short circuited.

Features include built-in GPIB interface and built-in pulse generator, both standard. Pulse mode allows dynamic testing of power supplies and components, without giving the device under test time to heat up. The flexible pulse mode provides six triggering methods, allowing synchronization with a wide variety of events. A Save/Recall feature allows you to save up to 7 complete instrument setups, one of which can be saved in non-volatile memory so that it is recalled automatically at power- on. Also standard is GPIB readback of actual input voltage and current, and extensive protection and status reporting capability.

The mainframe contains two (one) cooling fans whose speed automatically increases or decreases as the module temperatures rise and fall. This feature reduces overall noise level because the fans do not run at maximum speed at all times.

The input power rating curve for each module is shown in the module-specific pages. See the extended power paragraphs in this section for a description of the power rating curves. Note that regardless of a module’s power rating, input current is derated linearly from 2 volts down to 0 volts.

Each load module can be individually controlled either via GPIB or locally via the front panel. Once a channel is selected or addressed, all subsequent commands go to that channel until another channel is selected or addressed. Operation of all models is similar, regardless of power ratings. Therefore, the operating instructions given in this manual are generic, and apply to all modules. The module-specific pages provided with each module include specifications and other information pertinent just to a particular model. Some examples described here may use values that are not appropriate for your module, but the example is valid. Some descriptions refer to ranges, limits, full-scale values, and similar terms (for example, low range and high range). Refer to the module-specific pages provided with each module for the actual values.

Programs written for the Agilent 6060 series of single Electronic Loads can be used with the multiple loads, easing program development for applications using various members of the Agilent Electronic Load family. (Triggering via the ac line frequency or the load’s internal timer is available only in the multiple load mainframe.)

If your application requires a greater power or current capacity than one module can provide, load modules can be connected in parallel in CC or CR mode.

Operation Overview 15

Image 15
Contents Operating Manual Certification Safety Summary Manufacturer’s Declaration Safety SummarySymbol Description HerstellerbescheinigungPrinting History Page Table of Contents Local Operation InstallationConsiderations for Operating in Constant Resistance Mode Remote OperationCalibration Page What’s In This Manual OptionsGeneral Information Specifications Safety RequirementsDimensions Page Operation Overview IntroductionLocal/Remote Control Front Panel DescriptionRemote Programming Extended Power Operation Programmable FeaturesModes of Operation Constant Current CC Mode Immediate Current LevelTriggered Current Level Slew Rate Constant Resistance CR ModeTransient Current Level Software Current LimitTransient Resistance Level Constant Voltage CV ModeImmediate Resistance Level Triggered Resistance LevelTriggered Voltage Level Transient Voltage LevelTransient Operation Hpsl Command Description Continuous Transient OperationPulsed Transient Operation Selects the external trigger input Selects pulsed transient operationSets pulse width to 1 millisecond Triggering a transient pulse Triggering a preset levelSelects the external trigger input source Selects toggled operationRisetime Transition Limitation Slew Rate And Minimum Transition TimeTransition Times and Slew Rates Short On/Off Input Current, Voltage, and Power MeasurementSaving and Recalling Settings Reading Remote Programming ErrorsInput On/Off Protection Features Resetting Latched ProtectionStatus Reporting Overpower OvervoltageOvercurrent Remote Sensing Control ConnectorOvertemperature Reverse VoltageExternal Programming Input FaultPage Inspection Installing The ModulesPower Cord Configurations Procedure Channel Number Installing The MainframesTurn-On Checkout CoolingRack Mounting Changing Line Voltage Line Voltage SwitchesDisplay Description Gpib ErrorsChannel Errors Description Turn-On/SelftestController Connection Power TestAWG Rear Panel Connectors and SwitchesWire Size Strip back Gpib AddressSense Switch Input Binding Post Control ConnectorCom pin A3 Pins Al and A2+Sand -S IM and VMTrigger Connector Wiring ConsiderationsApplication Connections Remote Sense Connections Stranded Copper Wire Ampere Capacity Wire SizeAmpacity Local Sense ConnectionsZero-Volt Loading Connections Maximum Wire Lengths to Limit Voltage Drops12. Local Sensing 14. Parallel Operation Page Local Operation Local OperationControls and Indicators Description Chan Keys Function Keys Local Control Overview Using The Chan Keys Turning the Input On/Off Using The Function KeysSelecting the Channel Identifying the Selected ChannelRecommended Programming Sequence Examples Setting the Mode of OperationSetting CC Values Programming RangesSetting CR Values Examples Programming Range Setting CV ValuesTransient Operation Shorting The Input Using The System Keys Setting The Gpib AddressDisplaying Error Codes Recalling the Factory Default Values Changing Wake-up SettingsPage Enter Enter/Output StatementsGpib Address OutputOutput 705 Meascurr Sending a Remote CommandSelecting a Channel Getting Data BackRemote Programming Commands Output 705 Chan 2INPUT OFF Output 705MODEVOLT CC Mode ExampleCV Mode Example Output 705INPUT on Output 705MEASCURR?Remote Programming Flowchart Sheet Remote Programming Flowchart Sheet Output 705CHAN 2INPUT OFF Output 705MODECURR CR Mode ExampleOutput 705INPUT on Output 705MEASPOW? Continuous Transient Operation ExamplePulsed Transient Operation Example Synchronous Toggled Transient Operation ExampleOutput 705CHAN 1INPUT OFF Output 705MODEVOLT Output 705 Trigsour TIM Page Calibration Equipment RequiredRecommended Model Calibration CommandsCharacteristics Equipment Required for CalibrationExample Programs Calibration FlowchartsCalibration Flowchart for a Modules Calibration Flowchart for a Modules Calibration Flowchart for a Modules Program Listing for a Modules PausePause Subend Print Voltage Calibration Else END ifLine 610 Set low calibration point Calibration Flowchart for B Modules Calibration Flowchart for B Modules Calibration Flowchart for B Modules Clear Screen Print TABXY10,10CALIBRATION Done Program Listing for B ModulesWait 1260 If Flag then 1270 Output @LdRESReshipt 1280 Considerations For Operating In Constant Resistance Mode Considerations For Operating In Constant Resistance ModeConsiderations For Operating In Constant Resistance Mode Index IndexIndex Index 19, 20, 21 Agilent Sales and Support Offices Agilent Sales and Support OfficesManual Updates

6051A, 6050A specifications

Agilent Technologies has long been a leader in providing high-performance test and measurement solutions, and the 6050A and 6051A models exemplify this commitment to quality and innovation. The 6050A and 6051A are versatile signal generators that cater to a diverse range of applications, including research and development, manufacturing, and education, making them essential tools in laboratories and production environments.

The Agilent 6050A is a high-performance RF signal generator known for its frequency range capabilities, which span from 100 kHz to 20 GHz. It offers exceptional phase noise performance and low harmonic distortion, making it ideal for applications that require high signal integrity. The device supports various modulation formats, including AM, FM, and pulse modulation, allowing users to generate a wide range of test signals to simulate real-world conditions.

The 6051A builds upon the robust features of the 6050A with enhanced specifications and additional functionalities. It features a larger frequency modulation bandwidth, pushing the envelope for applications requiring more complex signal generation. The 6051A showcases a superior output power range, ensuring that test signals can be reliably produced at varying power levels. This model also includes advanced output control options that allow for precise signal manipulation, making it particularly suited for testing amplifiers and other RF components.

Both models share core technologies that ensure reliable performance, such as direct digital synthesis (DDS) and phase-locked loop (PLL) architectures. These technologies contribute to the exceptional frequency stability and accuracy that engineers and scientists have come to rely on. Additionally, the user-friendly interface integrated into both models simplifies operation and allows for quick configuration changes, facilitating efficient research and testing workflows.

With comprehensive connectivity options, including GPIB, USB, and Ethernet, the 6050A and 6051A can easily integrate into automated test environments. Their reliability, performance, and flexibility make them a perfect choice for those looking to advance their testing capabilities, whether in academic research, product development, or quality assurance in manufacturing.

In summary, the Agilent Technologies 6050A and 6051A signal generators are powerful tools designed to meet the demands of modern RF testing. Their advanced features, paired with Agilent’s reputation for quality and precision, make them invaluable assets in any engineering or research portfolio. Whether you require sophisticated signal generation for prototype testing or educational purposes, these models will deliver the performance needed to support your objectives.