Agilent Technologies 6051A, 6050A manual Considerations For Operating In Constant Resistance Mode

Page 91

A

Considerations For Operating In Constant Resistance Mode

The Agilent Electronic Loads implement Constant Resistance. (CR) mode by using either the CV circuits or CC circuits to regulate the input. The low range is regulated with the CV circuits, using the input current monitor as the reference. Therefore, resistance is described by the formula

V

= R

I

in which input current I is the reference, and voltage at the input terminals, V, is the parameter controlled to determine the resistance of the load.

The middle and high ranges are regulated with the CC circuits, using the input voltage monitor as the reference. Resistance is described by the formula

I 1

=

V R

in which input voltage V is the reference, and current through the input terminals, I, is the parameter controlled to determine the resistance of the load. The reciprocal of resistance, 1/R, is conductance, G. Therefore, the two highest ranges are best thought of as constant conductance ranges, with the CC circuit used to control conductance . This affects how the specified accuracy offset errors (in siemens or 1/ohms, formerly mhos) relate to programmed values (in ohms).

Any offset voltages in the op amps that comprise the load’s regulator circuits become errors at the input terminals of the load. In both CV and CC modes the offset is constant across the specified operating range, and can be accounted for during calibration.

The effects of offsets on CR mode accuracy are specified as plus-or-minus constant values in milliohms (low range) or millisiemens (middle or high ranges), and are less than 1% of full scale. In the two higher ranges of CR mode (the constant conductance ranges), the effect on the programmed resistance value is not linear over the resistance range, because resistance is the reciprocal of conductance. Also, because

G =

I

V

the effect of an offset in current (I) on conductance (G) is greater at low input voltages and less for large input voltages.

The electronic load designs are optimized for high-current applications. Therefore, the effects of offsets are more pronounced at high resistance (very low current) values. This may not represent a problem in typical applications, such as those in which the load is used to test a power supply. For example, a 5-volt power supply being tested at 1 amp will require a load resistance of 5 ohms, which is equivalent to 0.2 siemens. The worst-case offset of + 0.008 siemens produces a resistance of between 4.8 ohms and 5.2 ohms, which represents a 4% error.

By contrast, a 10,000-ohm load connected to a 60-volt power supply will draw only 6 milliamps. Electronic loads are not designed to regulate such small currents.

Considerations For Operating In Constant Resistance Mode 91

Image 91
Contents Operating Manual Certification Safety Summary Manufacturer’s Declaration Safety SummarySymbol Description HerstellerbescheinigungPrinting History Page Table of Contents Local Operation InstallationRemote Operation Considerations for Operating in Constant Resistance ModeCalibration Page Options What’s In This ManualGeneral Information Specifications Safety RequirementsDimensions Page Operation Overview IntroductionFront Panel Description Local/Remote ControlRemote Programming Programmable Features Extended Power OperationModes of Operation Immediate Current Level Constant Current CC ModeTriggered Current Level Slew Rate Constant Resistance CR ModeTransient Current Level Software Current LimitTransient Resistance Level Constant Voltage CV ModeImmediate Resistance Level Triggered Resistance LevelTransient Voltage Level Triggered Voltage LevelTransient Operation Continuous Transient Operation Hpsl Command DescriptionPulsed Transient Operation Selects pulsed transient operation Selects the external trigger inputSets pulse width to 1 millisecond Triggering a transient pulse Triggering a preset levelSelects the external trigger input source Selects toggled operationRisetime Transition Limitation Slew Rate And Minimum Transition TimeTransition Times and Slew Rates Short On/Off Input Current, Voltage, and Power MeasurementReading Remote Programming Errors Saving and Recalling SettingsInput On/Off Resetting Latched Protection Protection FeaturesStatus Reporting Overvoltage OverpowerOvercurrent Remote Sensing Control ConnectorOvertemperature Reverse VoltageExternal Programming Input FaultPage Inspection Installing The ModulesPower Cord Configurations Procedure Channel Number Installing The MainframesCooling Turn-On CheckoutRack Mounting Changing Line Voltage Line Voltage SwitchesDisplay Description Gpib ErrorsChannel Errors Description Turn-On/SelftestController Connection Power TestAWG Rear Panel Connectors and SwitchesWire Size Strip back Gpib AddressSense Switch Input Binding Post Control ConnectorCom pin A3 Pins Al and A2+Sand -S IM and VMWiring Considerations Trigger ConnectorApplication Connections Remote Sense Connections Stranded Copper Wire Ampere Capacity Wire SizeAmpacity Local Sense ConnectionsZero-Volt Loading Connections Maximum Wire Lengths to Limit Voltage Drops12. Local Sensing 14. Parallel Operation Page Local Operation Local OperationControls and Indicators Description Chan Keys Function Keys Local Control Overview Using The Chan Keys Turning the Input On/Off Using The Function KeysSelecting the Channel Identifying the Selected ChannelRecommended Programming Sequence Examples Setting the Mode of OperationSetting CC Values Programming RangesSetting CR Values Examples Programming Range Setting CV ValuesTransient Operation Shorting The Input Setting The Gpib Address Using The System KeysDisplaying Error Codes Recalling the Factory Default Values Changing Wake-up SettingsPage Enter Enter/Output StatementsGpib Address OutputOutput 705 Meascurr Sending a Remote CommandSelecting a Channel Getting Data BackRemote Programming Commands Output 705 Chan 2INPUT OFF Output 705MODEVOLT CC Mode ExampleCV Mode Example Output 705INPUT on Output 705MEASCURR?Remote Programming Flowchart Sheet Remote Programming Flowchart Sheet Output 705CHAN 2INPUT OFF Output 705MODECURR CR Mode ExampleOutput 705INPUT on Output 705MEASPOW? Continuous Transient Operation ExampleSynchronous Toggled Transient Operation Example Pulsed Transient Operation ExampleOutput 705CHAN 1INPUT OFF Output 705MODEVOLT Output 705 Trigsour TIM Page Calibration Equipment RequiredRecommended Model Calibration CommandsCharacteristics Equipment Required for CalibrationExample Programs Calibration FlowchartsCalibration Flowchart for a Modules Calibration Flowchart for a Modules Calibration Flowchart for a Modules Pause Program Listing for a ModulesPause Subend Print Voltage Calibration END if ElseLine 610 Set low calibration point Calibration Flowchart for B Modules Calibration Flowchart for B Modules Calibration Flowchart for B Modules Clear Screen Print TABXY10,10CALIBRATION Done Program Listing for B ModulesWait 1260 If Flag then 1270 Output @LdRESReshipt 1280 Considerations For Operating In Constant Resistance Mode Considerations For Operating In Constant Resistance ModeConsiderations For Operating In Constant Resistance Mode Index IndexIndex Index 19, 20, 21 Agilent Sales and Support Offices Agilent Sales and Support OfficesManual Updates

6051A, 6050A specifications

Agilent Technologies has long been a leader in providing high-performance test and measurement solutions, and the 6050A and 6051A models exemplify this commitment to quality and innovation. The 6050A and 6051A are versatile signal generators that cater to a diverse range of applications, including research and development, manufacturing, and education, making them essential tools in laboratories and production environments.

The Agilent 6050A is a high-performance RF signal generator known for its frequency range capabilities, which span from 100 kHz to 20 GHz. It offers exceptional phase noise performance and low harmonic distortion, making it ideal for applications that require high signal integrity. The device supports various modulation formats, including AM, FM, and pulse modulation, allowing users to generate a wide range of test signals to simulate real-world conditions.

The 6051A builds upon the robust features of the 6050A with enhanced specifications and additional functionalities. It features a larger frequency modulation bandwidth, pushing the envelope for applications requiring more complex signal generation. The 6051A showcases a superior output power range, ensuring that test signals can be reliably produced at varying power levels. This model also includes advanced output control options that allow for precise signal manipulation, making it particularly suited for testing amplifiers and other RF components.

Both models share core technologies that ensure reliable performance, such as direct digital synthesis (DDS) and phase-locked loop (PLL) architectures. These technologies contribute to the exceptional frequency stability and accuracy that engineers and scientists have come to rely on. Additionally, the user-friendly interface integrated into both models simplifies operation and allows for quick configuration changes, facilitating efficient research and testing workflows.

With comprehensive connectivity options, including GPIB, USB, and Ethernet, the 6050A and 6051A can easily integrate into automated test environments. Their reliability, performance, and flexibility make them a perfect choice for those looking to advance their testing capabilities, whether in academic research, product development, or quality assurance in manufacturing.

In summary, the Agilent Technologies 6050A and 6051A signal generators are powerful tools designed to meet the demands of modern RF testing. Their advanced features, paired with Agilent’s reputation for quality and precision, make them invaluable assets in any engineering or research portfolio. Whether you require sophisticated signal generation for prototype testing or educational purposes, these models will deliver the performance needed to support your objectives.