Trane TRG-TRC007-EN manual Acoustical Analysis, Source-Path-Receiver Analysis

Page 39

period three

Acoustical Analysis

notes

Acoustical Analysis

VAV box

ductwork

diffuser

air handler

occupied space

(source)

(receiver)

Figure 36

Source–Path–Receiver Analysis

Achieving the desired acoustical characteristics in a space, however, requires more than selecting an appropriate single-number descriptor. Including a single-number descriptor in a HVAC system specification means that someone must perform an acoustical analysis to determine if the proposed HVAC system and equipment will satisfy the space acoustical requirements. To make such a prediction, the analysis must convert the sound-power level of the source (the fan in the air handler in this example) to the sound-pressure level in the occupied space, assessing the effect of installation and environmental factors along the way.

Sound that reaches the occupied space will be altered by ductwork, wall and ceiling construction, room furnishings, and many other factors. The validity of an acoustical analysis, therefore, depends on the analyst’s familiarity with construction details.

32

TRG-TRC007-EN

Image 39
Contents Air Conditioning Clinic Fundamentals of Hvac Acoustics Business Reply Mail One of the Fundamental Series Comment CardFundamentals of Hvac Acoustics Fundamentals of Hvac Acoustics PrefaceContents TRG-TRC007-EN Fundamentals of Sound Fundamentals of SoundWhat is Sound? What is Sound?Sound Wave and Frequency Wavelength Broadband Sound and Tones Broadband SoundOctave Bands Octave BandsLogarithmic sums One-Third Octave Bands Sound Power and Sound Pressure Sound Power and Sound PressureAn Analogy Decibel DB = 10 log10 ´ log Logarithmic ScaleEquation for Sound Pressure Equation for Sound Power50 dB + 44 dB = 51 dB Logarithmic Addition of DecibelsSound Perception Rating Methods Human EarHuman Ear Response Loudness Contours Response to Tones Single-Number Rating MethodsSingle-Number Rating Methods Sound Perception and Rating Methods C WeightingWeighting Example Weighting Noise Criteria NC Curves NC-39 Room Criteria RC Curves MPa DB ref Pressure Sound Perception and Rating Methods RC-31 R Phon and Sone Octave-Band Rating Method Octave-Band Rating MethodAcoustical Analysis Acoustical AnalysisSetting a Design Goal Setting a Design GoalAcoustical Analysis Source-Path-Receiver Analysis Acoustical AnalysisSource-Path-Receiver Model Airborne Typical Sound PathsExample of Multiple Sound Paths Examples of a Single Sound PathIdentifying Sound Sources and Paths Sound-Path Modeling Modeling Sound PathsSupply Algorithms for Sound-Path Modeling Computerized Analysis Tools Terms Used in Sound-Path Modeling Attenuation and RegenerationSound Transmission Insertion loss IL Noise reduction NR Transmission loss TL Absorption Reflected Sound Receiver Sound Correction Equipment Sound Rating Equipment Sound RatingFields of Measurement Free FieldDistance Correction in a Free Field = L p1 20 logLot Near Field Reverberant Field Semireverberant Field Hvac Equipment Sound Rating Rating Hvac EquipmentReverberant-Room Method Free-Field Method Industry Standards Ducted Air-Handling Equipment Air Handler Test Configurations Former Methods of Sound Testing ARI Standard Sound Power by Octave Band Review-Period One ReviewNoise criteria NC Room criteria RC Review-Period TwoReview-Period Three Review-Period Four Review Questions for Period QuizOctave-band frequency, Hz Answers Glossary Glossary Room effect See receiver room correction Glossary Trane