Trane TRG-TRC007-EN manual Source-Path-Receiver Model

Page 40

period three

Acoustical Analysis

notes

Source–Path–Receiver Model

source

path

receiver

Figure 37

Predicting the sound level in a given space requires making a model of the system. A source–path–receiver model provides a systematic approach to predict the acoustical characteristics in a space. As the name suggests, this modeling method traces sound from the source to the location where we want to predict the sound (the receiver). How the sound travels between the source and the receiver, and everything it encounters as it travels along the way, constitutes the path.

In the example shown in Figure 37, the source is the fan in the mechanical room. The receiver is the person working in the adjacent office space. The supply duct provides one of the paths for sound to travel from the source to the receiver.

Using such an analysis, the designer can determine the effect of the paths on the sound emanating from the source, and can specify the maximum allowable equipment sound power that will not exceed the sound-pressure target for the space.

TRG-TRC007-EN

33

Image 40
Contents Air Conditioning Clinic Fundamentals of Hvac Acoustics Business Reply Mail Comment Card One of the Fundamental SeriesFundamentals of Hvac Acoustics Preface Fundamentals of Hvac AcousticsContents TRG-TRC007-EN Fundamentals of Sound Fundamentals of SoundWhat is Sound? What is Sound?Sound Wave and Frequency Wavelength Broadband Sound Broadband Sound and TonesOctave Bands Octave BandsLogarithmic sums One-Third Octave Bands Sound Power and Sound Pressure Sound Power and Sound PressureAn Analogy DB = 10 log DecibelLogarithmic Scale 10 ´ logEquation for Sound Power Equation for Sound PressureLogarithmic Addition of Decibels 50 dB + 44 dB = 51 dBHuman Ear Sound Perception Rating MethodsHuman Ear Response Loudness Contours Single-Number Rating Methods Response to TonesSingle-Number Rating Methods C Weighting Sound Perception and Rating MethodsWeighting Example Weighting Noise Criteria NC Curves NC-39 Room Criteria RC Curves MPa DB ref Pressure Sound Perception and Rating Methods RC-31 R Phon and Sone Octave-Band Rating Method Octave-Band Rating MethodAcoustical Analysis Acoustical AnalysisSetting a Design Goal Setting a Design GoalAcoustical Analysis Acoustical Analysis Source-Path-Receiver AnalysisSource-Path-Receiver Model Typical Sound Paths AirborneExamples of a Single Sound Path Example of Multiple Sound PathsIdentifying Sound Sources and Paths Modeling Sound Paths Sound-Path ModelingSupply Algorithms for Sound-Path Modeling Computerized Analysis Tools Attenuation and Regeneration Terms Used in Sound-Path ModelingSound Transmission Insertion loss IL Noise reduction NR Transmission loss TL Absorption Reflected Sound Receiver Sound Correction Equipment Sound Rating Equipment Sound RatingFree Field Fields of Measurement= L p1 20 log Distance Correction in a Free FieldLot Near Field Reverberant Field Semireverberant Field Rating Hvac Equipment Hvac Equipment Sound RatingReverberant-Room Method Free-Field Method Industry Standards Ducted Air-Handling Equipment Air Handler Test Configurations Former Methods of Sound Testing ARI Standard Sound Power by Octave Band Review Review-Period OneReview-Period Two Noise criteria NC Room criteria RCReview-Period Three Review-Period Four Review Quiz Questions for PeriodOctave-band frequency, Hz Answers Glossary Glossary Room effect See receiver room correction Glossary Trane