Trane TRG-TRC007-EN manual An Analogy

Page 17

period one

Fundamentals of Sound

notes

An Analogy

ISound power

K Correlates to bulb wattage

ISound pressure

K Correlates to brightness

Figure 12

The following comparison of sound and light may help illustrate the distinction between these two properties. Think of sound power as the wattage rating of a light bulb. Both measure a fixed amount of energy. Whether you put a 100-watt light bulb outdoors or in a closet, it is always 100-watt light bulb and always gives off the same amount of light.

Sound pressure corresponds to the brightness, from the light emitted by the light bulb, in a particular location in the room. Both sound pressure and brightness can be measured with a meter, and the immediate surroundings influence the magnitude of each. In the case of light, brightness depends on more than the wattage of the bulb. It also depends on how far the observer is from the light bulb, the color of the room, how reflective the wall surfaces are, and whether the light bulb is covered with a shade. These other factors affect how much light reaches the receiver, but do not affect the wattage of the light bulb.

Similarly, sound pressure depends not only on the sound power emitted by the source, but also on the characteristics of the surrounding environment. These might include the distance between the sound source and the listener, whether the room is carpeted or tiled, and whether the room is furnished or bare. Just as with light, environmental factors like these affect how much sound reaches the listener.

10

TRG-TRC007-EN

Image 17
Contents Air Conditioning Clinic Fundamentals of Hvac Acoustics Business Reply Mail One of the Fundamental Series Comment CardFundamentals of Hvac Acoustics Fundamentals of Hvac Acoustics PrefaceContents TRG-TRC007-EN Fundamentals of Sound Fundamentals of SoundWhat is Sound? What is Sound?Sound Wave and Frequency Wavelength Broadband Sound and Tones Broadband SoundOctave Bands Octave BandsLogarithmic sums One-Third Octave Bands Sound Power and Sound Pressure Sound Power and Sound PressureAn Analogy Decibel DB = 10 log10 ´ log Logarithmic ScaleEquation for Sound Pressure Equation for Sound Power50 dB + 44 dB = 51 dB Logarithmic Addition of DecibelsHuman Ear Response Sound Perception Rating MethodsHuman Ear Loudness Contours Single-Number Rating Methods Response to TonesSingle-Number Rating Methods Sound Perception and Rating Methods C WeightingWeighting Example Weighting Noise Criteria NC Curves NC-39 Room Criteria RC Curves MPa DB ref Pressure Sound Perception and Rating Methods RC-31 R Phon and Sone Octave-Band Rating Method Octave-Band Rating MethodAcoustical Analysis Acoustical AnalysisSetting a Design Goal Setting a Design GoalAcoustical Analysis Source-Path-Receiver Analysis Acoustical AnalysisSource-Path-Receiver Model Airborne Typical Sound PathsExample of Multiple Sound Paths Examples of a Single Sound PathIdentifying Sound Sources and Paths Sound-Path Modeling Modeling Sound PathsSupply Algorithms for Sound-Path Modeling Computerized Analysis Tools Terms Used in Sound-Path Modeling Attenuation and RegenerationSound Transmission Insertion loss IL Noise reduction NR Transmission loss TL Absorption Reflected Sound Receiver Sound Correction Equipment Sound Rating Equipment Sound RatingFields of Measurement Free FieldDistance Correction in a Free Field = L p1 20 logLot Near Field Reverberant Field Semireverberant Field Hvac Equipment Sound Rating Rating Hvac EquipmentReverberant-Room Method Free-Field Method Industry Standards Ducted Air-Handling Equipment Air Handler Test Configurations Former Methods of Sound Testing ARI Standard Sound Power by Octave Band Review-Period One ReviewNoise criteria NC Room criteria RC Review-Period TwoReview-Period Three Review-Period Four Review Questions for Period QuizOctave-band frequency, Hz Answers Glossary Glossary Room effect See receiver room correction Glossary Trane