Trane TRG-TRC007-EN manual Review-Period One

Page 70

period five

Review

notes

Fundamentals of HVAC Acoustics

period five

Review

Figure 68

We will now review the main concepts that were covered in this clinic on the fundamentals of HVAC acoustics.

Review—Period One

ISound power

KAcoustical energy emitted by source

KUnaffected by the environment

KCorrelates to bulb wattage

ISound pressure

KPressure disturbance in atmosphere

KAffected by strength of source, surroundings, and distance from source

KCorrelates to brightness in a particular location

Figure 69

Period One explained some of the basic concepts of sound. Sound is the audible emissions resulting from the vibration of molecules within an elastic medium. It is generated at many different frequencies at the same time. Noise is defined as unwanted, or obtrusive, sound.

Sound power and sound pressure are both terms that are used when describing sound. Sound power is the acoustical energy emitted by the sound source and is not affected by the environment. Sound pressure is a disturbance in the atmosphere and can be measured directly. Its intensity is influenced not only by the strength of the source, but also by the surroundings and the distance from the source to the listener. Sound pressure is what our ears hear and what sound meters measure.

TRG-TRC007-EN

63

Image 70
Contents Air Conditioning Clinic Fundamentals of Hvac Acoustics Business Reply Mail Comment Card One of the Fundamental SeriesFundamentals of Hvac Acoustics Preface Fundamentals of Hvac AcousticsContents TRG-TRC007-EN Fundamentals of Sound Fundamentals of SoundWhat is Sound? What is Sound?Sound Wave and Frequency Wavelength Broadband Sound Broadband Sound and TonesOctave Bands Octave BandsLogarithmic sums One-Third Octave Bands Sound Power and Sound Pressure Sound Power and Sound PressureAn Analogy DB = 10 log DecibelLogarithmic Scale 10 ´ logEquation for Sound Power Equation for Sound PressureLogarithmic Addition of Decibels 50 dB + 44 dB = 51 dBHuman Ear Sound Perception Rating MethodsHuman Ear Response Loudness Contours Single-Number Rating Methods Response to TonesSingle-Number Rating Methods C Weighting Sound Perception and Rating MethodsWeighting Example Weighting Noise Criteria NC Curves NC-39 Room Criteria RC Curves MPa DB ref Pressure Sound Perception and Rating Methods RC-31 R Phon and Sone Octave-Band Rating Method Octave-Band Rating MethodAcoustical Analysis Acoustical AnalysisSetting a Design Goal Setting a Design GoalAcoustical Analysis Acoustical Analysis Source-Path-Receiver AnalysisSource-Path-Receiver Model Typical Sound Paths AirborneExamples of a Single Sound Path Example of Multiple Sound PathsIdentifying Sound Sources and Paths Modeling Sound Paths Sound-Path ModelingSupply Algorithms for Sound-Path Modeling Computerized Analysis Tools Attenuation and Regeneration Terms Used in Sound-Path ModelingSound Transmission Insertion loss IL Noise reduction NR Transmission loss TL Absorption Reflected Sound Receiver Sound Correction Equipment Sound Rating Equipment Sound RatingFree Field Fields of Measurement= L p1 20 log Distance Correction in a Free FieldLot Near Field Reverberant Field Semireverberant Field Rating Hvac Equipment Hvac Equipment Sound RatingReverberant-Room Method Free-Field Method Industry Standards Ducted Air-Handling Equipment Air Handler Test Configurations Former Methods of Sound Testing ARI Standard Sound Power by Octave Band Review Review-Period OneReview-Period Two Noise criteria NC Room criteria RCReview-Period Three Review-Period Four Review Quiz Questions for PeriodOctave-band frequency, Hz Answers Glossary Glossary Room effect See receiver room correction Glossary Trane