Trane TRG-TRC007-EN manual Reflected Sound

Page 52

period three

Acoustical Analysis

notes

Reflected Sound

Figure 50

Finally, some of the incident sound energy (Wi) bounces off of (or is reflected from) the material. Reflected sound becomes especially important when the sound source and the receiver are located in the same room.

Consider a mechanical equipment room that contains a water chiller, pumps, and other sound sources. Often the walls of the equipment room are constructed of masonry—either cement block or poured concrete. Neither of these materials absorb or transmit very much of the incident sound energy, so most of it is reflected back into the room. The reflected sound adds to the sound coming from the source, greatly increasing the sound level in the room. The best way to reduce reflected sound is to add an absorptive material to as much of the walls, floor, and ceiling as possible.

On occasion, reducing reflected sound may also lower the sound levels in adjacent spaces. Using the equipment room example, reducing the reflected sound energy lowers the sound level in the equipment room. Given a fixed transmission loss for the walls, this will result in a decrease in sound that travels to the adjacent space. Said another way, if it is quieter in the equipment room, it will be quieter in the adjacent spaces.

TRG-TRC007-EN

45

Image 52
Contents Air Conditioning Clinic Fundamentals of Hvac Acoustics Business Reply Mail Comment Card One of the Fundamental SeriesFundamentals of Hvac Acoustics Preface Fundamentals of Hvac AcousticsContents TRG-TRC007-EN Fundamentals of Sound Fundamentals of SoundWhat is Sound? What is Sound?Sound Wave and Frequency Wavelength Broadband Sound Broadband Sound and TonesOctave Bands Octave BandsLogarithmic sums One-Third Octave Bands Sound Power and Sound Pressure Sound Power and Sound PressureAn Analogy DB = 10 log DecibelLogarithmic Scale 10 ´ logEquation for Sound Power Equation for Sound PressureLogarithmic Addition of Decibels 50 dB + 44 dB = 51 dBHuman Ear Sound Perception Rating MethodsHuman Ear Response Loudness Contours Single-Number Rating Methods Response to TonesSingle-Number Rating Methods C Weighting Sound Perception and Rating MethodsWeighting Example Weighting Noise Criteria NC Curves NC-39 Room Criteria RC Curves MPa DB ref Pressure Sound Perception and Rating Methods RC-31 R Phon and Sone Octave-Band Rating Method Octave-Band Rating MethodAcoustical Analysis Acoustical AnalysisSetting a Design Goal Setting a Design GoalAcoustical Analysis Acoustical Analysis Source-Path-Receiver AnalysisSource-Path-Receiver Model Typical Sound Paths AirborneExamples of a Single Sound Path Example of Multiple Sound PathsIdentifying Sound Sources and Paths Modeling Sound Paths Sound-Path ModelingSupply Algorithms for Sound-Path Modeling Computerized Analysis Tools Attenuation and Regeneration Terms Used in Sound-Path ModelingSound Transmission Insertion loss IL Noise reduction NR Transmission loss TL Absorption Reflected Sound Receiver Sound Correction Equipment Sound Rating Equipment Sound RatingFree Field Fields of Measurement= L p1 20 log Distance Correction in a Free FieldLot Near Field Reverberant Field Semireverberant Field Rating Hvac Equipment Hvac Equipment Sound RatingReverberant-Room Method Free-Field Method Industry Standards Ducted Air-Handling Equipment Air Handler Test Configurations Former Methods of Sound Testing ARI Standard Sound Power by Octave Band Review Review-Period OneReview-Period Two Noise criteria NC Room criteria RCReview-Period Three Review-Period Four Review Quiz Questions for PeriodOctave-band frequency, Hz Answers Glossary Glossary Room effect See receiver room correction Glossary Trane