Motorola 6806800C08B manual Message-Based Checkpointing Service, Management Access Server

Page 39

Message-Based Checkpointing Service

NetPlane Core Services

 

 

2.6.6.2.3Management Access Server

The Management Access Server (MAS) manages the database of managed objects. It performs the following tasks:

z Receiving managed object row ownership information from the OAAs z Direct management access requests from MAAs to the proper OAA

2.6.6.2.4Command Line Interpreter Management Access Point

The Command Line Interpreter (CLI) provides a command-line based user interface for the NCS system. It provides a mechanism for describing commands that can be used to manage configurable entities. The commands are customizable depending on the needs of the application or NCS and are dynamically registered and deregistered. The functionality provided by the CLI includes:

z Displaying of available commands and results

z Programmatic description of command syntax and semantics z Menu navigation

z Key assignment properties (hot keys)

z Dynamic registering of command descriptions

z Fetching character stream from input sources such as a file or terminal

z Matching character stream against all possible command descriptions and when a match is found invoke respective function

The CLI provides an API which allows applications or NCS services to register and deregister CLI commands. A detailed description of this API can be found in the Command Line Interface Programmer's Reference.

2.6.6.2.5SNMP Management Access Point

The SNMP Management Access Point is an SNMP subagent whose purpose is to provide a mapping between the SNMP management agent and the MASv. This mapping allows applications and NCS services to access managed objects maintained by applications and NCS services. The main tasks of the SNMP Management Access Point are:

z Registering MIB rows with the SNMP master agent

z Receiving and forwarding SNMP requests from the SNMP master agent For further details refer to the SNMP SubAgent Programmer's Reference.

2.6.7Message-Based Checkpointing Service

The Message-Based Checkpointing Service (MBCSv) was introduced to complement the SAF- compliant Checkpointing Service. MBCSv defines a simple synchronization protocol which keeps an active and one or more of its stand-by entities in synchronization. Unlike the SAF- compliant Checkpointing Service, the MBCSv does not maintain replicas.

NetPlane Core Services Overview User’s Guide (6806800C08B)

39

Image 39
Contents NetPlane Core Services Overview Trademarks Contents NetPlane Core Services Overview User’s Guide 6806800C08B ContentsList of Tables Page Avantellis Main Software Components List of FiguresPage Overview of Contents About this ManualAbbreviations HPM About this Manual Abbreviation DefinitionConventions Notation DescriptionBold Part Number Edition Description Summary of ChangesComments and Suggestions About this Manual Notation DescriptionAvantellis 3000 Series Overview IntroductionAvantellis 3000 Series Software Architecture NetPlane SoftwareIntroduction Carrier Grade Linux Operating System Introduction Carrier Grade Linux Operating SystemPage Architectural Overview NetPlane Core ServicesNCS Services NetPlane Core Services NCS ServicesCorresponding SAF AIS NCS Service Name Services Description Leap Portability Layer Message Distribution ServiceMessage Distribution Service NetPlane Core Services NCS Service Name DescriptionNCS Directors Distribution of NCS Services in the Avantellis SystemNetPlane Core Services System Description System DescriptionNCS Directors NCS Directors NetPlane Core ServicesNetPlane Core Services NCS Servers NCS ServersSample Applications System Description System Description NetPlane Core ServicesManagement Access NetPlane Core ServicesManagement AccessDescription Category Management Access NetPlane Core Services Management Access Information FlowSAF-Compliant NCS Services Availability ServiceNetPlane Core Services SAF-Compliant NCS Services Availability Service NetPlane Core Services Availability DirectorAvailability Manager Availability Agent Checkpoint ServiceNetPlane Core Services Checkpoint Service Availability Node DirectorCheckpoint Director Checkpoint Service NetPlane Core ServicesMessage Queue Service Checkpoint Node DirectorCheckpoint Agent Message Queue Node Director Event Distribution ServiceEvent Distribution Service NetPlane Core Services Message Queue DirectorEvent Distribution Agent Global Lock ServiceNetPlane Core Services Global Lock Service Event Distribution ServerGlobal Lock Node Director Motorola Complementary NCS ServicesDistributed Tracing Service Global Locking DirectorArchitecture HPI Integration ServiceDistributed Trace Server Distributed Trace AgentHPI Adaption Private Library HPL Simple Software UpgradeSystem Resource Monitoring Service Simple Software Upgrade NetPlane Core ServicesPersistent Store Server Persistent Store-Restore ServiceSystem Description Parser Management Access ServicesPSSv Command Execution Functions Management Access Services NetPlane Core ServicesObject Access Agent Management Access AgentSnmp Management Access Point Message-Based Checkpointing ServiceManagement Access Server Command Line Interpreter Management Access PointInterface Service Interface Agents Message Distribution ServiceInterface Director Interface Node DirectorNetPlane Core Services Message Distribution Service Message Distribution Service Software ComponentsImplementation Notes Cancelling Application ThreadsLeap Portability Layer NetPlane Core Services Leap Portability LayerPage Introduction Toolkit InstallationToolkit Contents NCS ToolkitNCS Toolkit Building the Samples Make CommandsBuilding the Samples Development Host PrerequisitesParameters Make CommandsNCS ToolkitRunning the Sample programs Target PrerequisitesNCS Toolkit Running the Sample programs Setting Ldlibrarypath Setting Ldlibrarypath NCS ToolkitRunning the Sample Programs Page Related Documentation Motorola Embedded Communications Computing DocumentsDocument Title Publication Number Related Specifications Related Documentation Related SpecificationsDocument Title Version/Source

6806800C08B specifications

The Motorola 68000 microprocessor, particularly the revision marked as 68000C08B, stands out as a seminal component in the evolution of computing technology. Introduced in 1979, the 68000 architecture laid the groundwork for many advanced systems, influencing a multitude of platforms, from personal computers to game consoles.

The Motorola 68000C08B features a 16-bit data bus and a 24-bit address bus, allowing for a memory addressing capability of up to 16 MB. This architecture was pioneering for its time, enabling more extensive and complex software applications than its predecessors. The C08 revision particularly emphasized optimizing power consumption while maintaining performance, making it ideal for embedded systems and portable devices.

One of the 68000's key characteristics is its unique register set, which allows for a versatile range of operations. It consists of 8 general-purpose data registers and 8 address registers. The architecture supports both integer and floating-point operations, thanks to an integrated instruction set that facilitates complex mathematical computations, crucial for applications in graphics and gaming.

In terms of performance, the 68000 processor operates at clock speeds ranging from 8 MHz to 16 MHz, depending on the specific variant. The instruction set architecture (ISA) is known for its orthogonality, meaning that most instructions can be used interchangeably across different registers. This design simplicity allows for efficient coding and faster execution times, a significant advantage for developers.

Another remarkable feature of the 68000C08B is its capability for multitasking and improved context switching. Its advanced memory management, combined with support for virtual memory in later implementations, catered to the needs of operating systems and real-time applications, making it suitable for both consumer electronics and industrial machinery.

The Motorola 68000 family also supports a variety of peripherals, enhancing its flexibility as a microcontroller. This compatibility allowed manufacturers to create diverse product lines, from keypads and mice to modems and hard drives.

In summary, the Motorola 68000C08B microprocessor not only advanced the landscape of computer technology in the late 20th century but also helped set the stage for future innovations through its architecture, performance capabilities, and versatility in numerous applications. Its legacy continues to influence modern computing paradigms, ensuring the 68000 remains an essential chapter in the history of microprocessors.