Siemens UL1066, UL 489 specifications General, Content of the Manual, Introduction

Page 6

Introduction and Overview

WL Circuit Breaker

General

This manual is aimed at those who want to find out more about the different applications of communications-capable circuit breakers in power distribution systems.

It contains a detailed guide to commissioning, operating, diagnosing and maintaining the new communications-capable WL Circuit Breaker.

Content of the Manual

Chapter 1 contains a short introduction to communications in power distribution systems, and provides an overview of the benefits and applications of communications- capable circuit breakers. The chapter concludes with a short description of the most important communication bus systems.

Chapter 2 contains a general description of the WL Circuit Breaker. It includes information on configuration data and provides commissioning instructions.

Chapter 3 explains how the circuit breakers are integrated in a power management system and describes the supported function codes, register maps and exception codes.

WL is the first circuit breaker that can be configured, diagnosed and maintained remotely without the use of field bus systems and higher-level operator control and monitoring systems. These procedures are carried out using the breaker data adapter (BDA), a state-of-the-art Internet- capable configuration device for circuit breakers, which is described in Chapter 4.

Introduction

The demand for communications- capable systems, data transparency and flexibility in industrial automation systems is growing all the time. Bus systems and intelligent switchgear are vital to ensure that industrial power systems can meet these demands, since industrial production and building management are now inconceivable without communications technology.

The evermore-stringent requirements placed on the electrical and mechanical aspects of circuit breakers, the growing need for flexibility and efficiency, and increasing cost pressure and automation have contributed to the recent major innovations in circuit breaker technology. In power distribution systems, the WL Circuit Breaker uses industry-standard bus systems to transmit key information for warnings, commissioning and load shedding to a central control room. The wide range of applications ensure that these circuit breakers are more than just simple switching and protective devices.

Point-to-point communication, as well as data entry, transmission, analysis and visualization are only possible if the automation and low- voltage switchgear technology components can be easily integrated in a communication solution to leverage the full range of functions available.

1/1

WL MODBUS Communication and Electronic Accessories • January 2005

Image 6
Contents Powerful ideas Global network of innovationCommunication-capable Circuit Breakers Communication-capable Circuit Breaker Correct Usage Safety GuidelinesQualified Personnel Registered TrademarksIntroduction Overview Content of the Manual GeneralIntroduction Cost Saving System SolutionsWL Circuit Breakers-Modular Intelligent Easy PlanningCommunication Bus Systems ModbusCommunication Structure of the WL Circuit Breakers Ethernet WL Circuit Breaker Introduction and Overview Brief Description of the WL Circuit BreakerCubicleBUS Communications Capability of the Electronic Trip Units ETUsFunctional overview of the trip unit system ETU725 ETU727 ETU745Setting range of the Ig Basic Functions ETU725 ETU727 ETU745Basic Functions ETU748 ETU755 ETU776 Communication Metering Data Availability on the CubicleBUSData point group ETU745 Data points with the same source 755 orPin Configuration Modbus COM16 Module and the BSSModbus Module COM16 Modbus Write Protection DPWriteEnable Modbus Installation GuidelineData Exchange via the COM16 Module Meaning Position and text on the cable CubicleBUSCubicleBUS + Cubicle BUS LED Meaning Rear Microswitch S46 Middle S47 Front S48Meaning PositionBreaker Status Sensor BSS Metering Function Plus GeneralMetering Function Plus Harmonic analysisWaveform buffer VT Accuracy Parameters for the settings of the metering functionVoltage Transformers Maximum distance from voltage transformerMetering range 81THDC Important functions/parameters for communications Load ManagementExtended Protective Function Minimum for Communicated Currents Normal Positive Power Flow DirectionSetpoints Event and Trip LogRotary Switches InstallationExternal CubicleBUS Modules Power Supply Maximum CubicleBUS ConfigurationCubicleBUS Installation Guidelines CubicleBUS LED Meaning LED DisplayMeaning All other LEDs MeaningTesting the Digital Input and Output Modules DeviceFunctional description Technical data for the digital input moduleDigital Input Module Functional description for changing parameter setsSelector switch position to the right Digital Output Module with Rotary SwitchSelector switch position to the left Delay timeConfigurable Digital Output Module Technical data for the digital configurable output module Trigger event Waveform buffer BPower value ranges W/VA Analog Output ModuleSwitch position cos Technical data for the analog output moduleTest function ZSI Module Operating principleExample as illustrated in Graphic Technical data for the ZSI module It trips after tZSI = 50 ms. Time saved = 250 msCommunication-capable Circuit Breakers General information Output current Inrush current Type Order No Communication-capable Circuit Breakers Modbus Profile for WL Circuit Breaker Supervisory Systems COM16 Supported Function Codes Function 01 Read CoilsFunction 02 Read Discrete Inputs Function 03 Read Holding Registers Request Message to slaveReply Message from slave Function 04 Read Input Registers Function 05 Write Single CoilFunction 07 Read Exception Status Function 08 Diagnostics Function 11 Get Communication Event CounterFunction 12 Get Communication Event Log What the Event Bytes Contain COM16 slave Send EventFunction 15 Write Multiple Coils Function 16 Write Multiple Registers Exception Responses Exception Codes Code Name MeaningDefault Register Lists Basic Data Type 1 Registers and Default Data PointsBasic Data Type 2 Registers and Default Data Points Basic Data Type 3 Registers and Default Data Points Complete List of Datasets Data bytesSample Dataset Min Max BitsBit Mapping for Breaker Status Register Byte Register DescriptionWL Configurator Brief Description Communication-capable Circuit Breakers Breaker Data Adapter BDA Breaker Data Adapter Plus BDA Plus Brief Description and System Requirements DescriptionBenefits of the BDA BDA in Offline Mode or BDA Plus BDA as a Hand-Held Device or BDA PlusBDA Plus as an Ethernet Interface Intranet and InternetWhat is Java? Circuit breaker requirementsGetting started with the BDA Plus Connection to WL Circuit Breakers TemporaryPermanent Operation Meaning of the LEDs on the BDATechnical data for the BDA and BDA Plus 4This table provides technical data for the BDA and BDA PlusConnection to the BDA via the Serial Communication System Usually have to be changed. They are shown as a referenceBreaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Connection to the BDA Plus via the Ethernet Interface Definition of Key TermsExample IP AddressesSubnet Mask BDA IP AddressLanguages and Help Operating Instructions and TroubleshootingOffline/Online Mode Displaying DataOperation Example Password ProtectionSentron PrintingTroubleshooting List Fault Description Solution Siemens Energy & Automation, Inc Siemens Energy & Automation, Inc. All Rights Reserved

UL 489, UL1066 specifications

Siemens UL1066 and UL489 are essential components in the landscape of electrical equipment, specifically in circuit protection and control. These standards ensure reliability, safety, and efficiency in various applications, including industrial, commercial, and residential settings.

The Siemens UL1066 is primarily focused on disconnect switches. These devices are designed to isolate electrical circuits, ensuring the safety of both personnel and equipment during maintenance or in case of faults. One of the key features of UL1066 disconnect switches is their high breaking capacity, enabling them to handle significant fault currents without failure. This characteristic is crucial in protecting downstream equipment from damage caused by short circuits. The UL1066 switches are also known for their robust construction, often featuring a metal enclosure that enhances durability and environmental resistance. Additionally, these switches can be operated manually or remotely, offering flexibility in operation and control.

On the other hand, Siemens UL489 circuit breakers provide comprehensive protection against overcurrents and short circuits. These devices not only interrupt fault currents but also protect connected devices from damage due to overload situations. Key features of UL489 circuit breakers include adjustable trip settings, which allow users to customize the response to overcurrent conditions based on specific application requirements. This adaptability makes them suitable for a wide range of environments, from large industrial plants to smaller commercial buildings.

Both UL1066 and UL489 products are constructed with advanced technologies, such as thermal-magnetic or electronic trip mechanisms in UL489 devices, ensuring precise and timely interruption of fault currents. These technologies promote energy efficiency and stability within electrical systems. In addition, many of these devices are equipped with indication features, providing clear visual status cues for quick assessment in emergency situations.

In terms of characteristics, both UL1066 and UL489 devices adhere to rigorous testing and certification processes to meet UL standards. This compliance assures users of their performance and reliability. Furthermore, the devices are designed to accommodate a wide range of operating temperatures and environmental conditions, making them versatile choices for various applications.

In summary, Siemens UL1066 and UL489 devices are paramount in ensuring safety and efficiency in electrical circuits. Their advanced features and robust construction make them indispensable in protecting both personnel and equipment in an array of industrial and commercial applications.