Siemens UL1066, UL 489 specifications Ethernet

Page 10

Introduction and Overview

WL Circuit Breaker

Ethernet

The Industrial Ethernet is a high- performance network that conforms to IEE 802.3 (ETHERNET). The highly successful 10Mbit/s technology, which has been used for over a decade, and the new 100Mbit/s technology (Fast Ethernet to IEEE 802.3u) in conjunction with Switching Full Duplex and Autosensing enable the required network performance to be adapted to different requirements. The appropriate data rates are selected as required because complete compatibility enables the technology to be implemented on a step-by-step basis.

Used in 80% of networks, Ethernet is currently the best of its kind in LAN environments.

Ethernet does not function according to a master-slave principle. All the stations have equal priority on the bus, which means that any station can be the sender or receiver. A sender can only send on the bus if no other station is sending at that time. This is due to the fact that the stations are always "listening in" to find out whether any messages are being sent to them or any senders are currently active. If a sender has started sending, it checks that the message it has sent is not corrupt. If the message is not changed, the send operation continues.

If the sender detects that its data is corrupt, another sender must have already started sending data. In this case, both senders abort their respective send operations.

After a random time has elapsed, the sender restarts the send operation. This is known as CSMA/CD and, as a "random" access procedure, does not guarantee a response within a certain time frame. This largely depends on the bus load, which means that real- time applications cannot yet be implemented with Ethernet.

1/5

WL MODBUS Communication and Electronic Accessories • January 2005

Image 10
Contents Powerful ideas Global network of innovationCommunication-capable Circuit Breakers Communication-capable Circuit Breaker Correct Usage Safety GuidelinesQualified Personnel Registered TrademarksIntroduction Overview General Content of the ManualIntroduction Cost Saving System Solutions WL Circuit Breakers-Modular Intelligent Easy PlanningCommunication Bus Systems ModbusCommunication Structure of the WL Circuit Breakers Ethernet WL Circuit Breaker Introduction and Overview Brief Description of the WL Circuit BreakerCubicleBUS Communications Capability of the Electronic Trip Units ETUsFunctional overview of the trip unit system ETU725 ETU727 ETU745Setting range of the Ig Basic Functions ETU725 ETU727 ETU745Basic Functions ETU748 ETU755 ETU776 Communication Metering Data Availability on the CubicleBUSData point group ETU745 Data points with the same source 755 orModbus COM16 Module and the BSS Pin ConfigurationModbus Module COM16 Modbus Write Protection DPWriteEnable Modbus Installation GuidelineMeaning Position and text on the cable CubicleBUS Data Exchange via the COM16 ModuleCubicleBUS + Cubicle BUS LED Meaning Rear Microswitch S46 Middle S47 Front S48Meaning PositionBreaker Status Sensor BSS Metering Function Plus GeneralHarmonic analysis Metering Function PlusWaveform buffer VT Accuracy Parameters for the settings of the metering functionVoltage Transformers Maximum distance from voltage transformerMetering range 81THDC Load Management Important functions/parameters for communicationsExtended Protective Function Minimum for Communicated Currents Normal Positive Power Flow DirectionSetpoints Event and Trip LogInstallation Rotary SwitchesExternal CubicleBUS Modules Maximum CubicleBUS Configuration Power SupplyCubicleBUS Installation Guidelines CubicleBUS LED Meaning LED DisplayMeaning All other LEDs MeaningTesting the Digital Input and Output Modules DeviceFunctional description Technical data for the digital input moduleDigital Input Module Functional description for changing parameter setsSelector switch position to the right Digital Output Module with Rotary SwitchSelector switch position to the left Delay timeConfigurable Digital Output Module Technical data for the digital configurable output module Trigger event Waveform buffer BPower value ranges W/VA Analog Output ModuleTechnical data for the analog output module Switch position cosTest function Operating principle ZSI ModuleExample as illustrated in Graphic Technical data for the ZSI module It trips after tZSI = 50 ms. Time saved = 250 msCommunication-capable Circuit Breakers General information Output current Inrush current Type Order No Communication-capable Circuit Breakers Modbus Profile for WL Circuit Breaker Supervisory Systems Function 01 Read Coils COM16 Supported Function CodesFunction 02 Read Discrete Inputs Request Message to slave Function 03 Read Holding RegistersReply Message from slave Function 05 Write Single Coil Function 04 Read Input RegistersFunction 07 Read Exception Status Function 11 Get Communication Event Counter Function 08 DiagnosticsFunction 12 Get Communication Event Log What the Event Bytes Contain COM16 slave Send EventFunction 15 Write Multiple Coils Function 16 Write Multiple Registers Exception Responses Exception Codes Code Name MeaningBasic Data Type 1 Registers and Default Data Points Default Register ListsBasic Data Type 2 Registers and Default Data Points Basic Data Type 3 Registers and Default Data Points Complete List of Datasets Data bytesSample Dataset Min Max BitsBit Mapping for Breaker Status Register Byte Register DescriptionWL Configurator Brief Description Communication-capable Circuit Breakers Breaker Data Adapter BDA Breaker Data Adapter Plus BDA Plus Description Brief Description and System RequirementsBenefits of the BDA BDA in Offline Mode or BDA Plus BDA as a Hand-Held Device or BDA PlusBDA Plus as an Ethernet Interface Intranet and InternetCircuit breaker requirements What is Java?Getting started with the BDA Plus Temporary Connection to WL Circuit BreakersPermanent Operation Meaning of the LEDs on the BDATechnical data for the BDA and BDA Plus 4This table provides technical data for the BDA and BDA PlusConnection to the BDA via the Serial Communication System Usually have to be changed. They are shown as a referenceBreaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Connection to the BDA Plus via the Ethernet Interface Definition of Key TermsExample IP AddressesSubnet Mask BDA IP AddressLanguages and Help Operating Instructions and TroubleshootingOffline/Online Mode Displaying DataOperation Example Password ProtectionSentron PrintingTroubleshooting List Fault Description Solution Siemens Energy & Automation, Inc Siemens Energy & Automation, Inc. All Rights Reserved