Siemens UL 489, UL1066 BDA in Offline Mode or BDA Plus, BDA as a Hand-Held Device or BDA Plus

Page 67

BDA in Offline Mode (or BDA Plus)

In offline mode, the BDA or BDA Plus is only connected to a laptop (represents all input/output devices). All the required parameters can be set in this operating mode and saved for later use (download to the circuit- breakers). No power is supplied via the laptop COM interface, which means that an additional power supply unit (24V DC) must be connected to the BDA.

BDA as a Hand-Held Device (or BDA Plus)

As a hand-held device, the BDA is operated by connecting it temporarily to the appropriate WL trip unit interface.

All circuit breakers in a system can be parameterized one after the other using just one BDA, and the parameter data saved to a laptop for further processing. In addition, all the diagnostic data of the circuit breaker can be read via the BDA.

An additional 24V DC power supply is required if the circuit breaker is not yet supplied with power (e.g. by means of an external 24V DC source on the CubicleBUS).

Breaker Data Adapter (BDA)

WL Circuit Breaker

Graphic 4-1The BDA must be supplied externally with 24V DC. Parameters can be set, stored, and printed out.

Graphic 4-2In temporary mode, the BDA is normally attached using magnets.

4/2

WL MODBUS Communication and Electronic Accessories • January 2005

Image 67
Contents Global network of innovation Powerful ideasCommunication-capable Circuit Breakers Communication-capable Circuit Breaker Registered Trademarks Safety GuidelinesQualified Personnel Correct UsageIntroduction Overview General Content of the ManualIntroduction Easy Planning System SolutionsWL Circuit Breakers-Modular Intelligent Cost SavingModbus Communication Bus SystemsCommunication Structure of the WL Circuit Breakers Ethernet WL Circuit Breaker Brief Description of the WL Circuit Breaker Introduction and OverviewCommunications Capability of the Electronic Trip Units ETUs CubicleBUSETU725 ETU727 ETU745 Functional overview of the trip unit systemBasic Functions ETU725 ETU727 ETU745 Setting range of the IgBasic Functions ETU748 ETU755 ETU776 Communication Data points with the same source 755 or Data Availability on the CubicleBUSData point group ETU745 MeteringModbus COM16 Module and the BSS Pin ConfigurationModbus Module COM16 Modbus Installation Guideline Modbus Write Protection DPWriteEnableMeaning Position and text on the cable CubicleBUS Data Exchange via the COM16 ModuleCubicleBUS + Position Rear Microswitch S46 Middle S47 Front S48Meaning Cubicle BUS LED MeaningBreaker Status Sensor BSS General Metering Function PlusHarmonic analysis Metering Function PlusWaveform buffer Maximum distance from voltage transformer Parameters for the settings of the metering functionVoltage Transformers VT AccuracyMetering range 81THDC Load Management Important functions/parameters for communicationsExtended Protective Function Event and Trip Log Normal Positive Power Flow DirectionSetpoints Minimum for Communicated CurrentsInstallation Rotary SwitchesExternal CubicleBUS Modules Maximum CubicleBUS Configuration Power SupplyCubicleBUS Installation Guidelines All other LEDs Meaning LED DisplayMeaning CubicleBUS LED MeaningDevice Testing the Digital Input and Output ModulesFunctional description for changing parameter sets Technical data for the digital input moduleDigital Input Module Functional descriptionDelay time Digital Output Module with Rotary SwitchSelector switch position to the left Selector switch position to the rightConfigurable Digital Output Module Trigger event Waveform buffer B Technical data for the digital configurable output moduleAnalog Output Module Power value ranges W/VATechnical data for the analog output module Switch position cosTest function Operating principle ZSI ModuleExample as illustrated in Graphic It trips after tZSI = 50 ms. Time saved = 250 ms Technical data for the ZSI moduleCommunication-capable Circuit Breakers General information Output current Inrush current Type Order No Communication-capable Circuit Breakers Modbus Profile for WL Circuit Breaker Supervisory Systems Function 01 Read Coils COM16 Supported Function CodesFunction 02 Read Discrete Inputs Request Message to slave Function 03 Read Holding RegistersReply Message from slave Function 05 Write Single Coil Function 04 Read Input RegistersFunction 07 Read Exception Status Function 11 Get Communication Event Counter Function 08 DiagnosticsFunction 12 Get Communication Event Log COM16 slave Send Event What the Event Bytes ContainFunction 15 Write Multiple Coils Function 16 Write Multiple Registers Exception Responses Code Name Meaning Exception CodesBasic Data Type 1 Registers and Default Data Points Default Register ListsBasic Data Type 2 Registers and Default Data Points Basic Data Type 3 Registers and Default Data Points Data bytes Complete List of DatasetsMin Max Bits Sample DatasetByte Register Description Bit Mapping for Breaker Status RegisterWL Configurator Brief Description Communication-capable Circuit Breakers Breaker Data Adapter BDA Breaker Data Adapter Plus BDA Plus Description Brief Description and System RequirementsBenefits of the BDA BDA as a Hand-Held Device or BDA Plus BDA in Offline Mode or BDA PlusIntranet and Internet BDA Plus as an Ethernet InterfaceCircuit breaker requirements What is Java?Getting started with the BDA Plus Temporary Connection to WL Circuit BreakersPermanent Meaning of the LEDs on the BDA Operation4This table provides technical data for the BDA and BDA Plus Technical data for the BDA and BDA PlusUsually have to be changed. They are shown as a reference Connection to the BDA via the Serial Communication SystemBreaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Breaker Data Adapter BDA Definition of Key Terms Connection to the BDA Plus via the Ethernet InterfaceBDA IP Address IP AddressesSubnet Mask ExampleDisplaying Data Operating Instructions and TroubleshootingOffline/Online Mode Languages and HelpPrinting Password ProtectionSentron Operation ExampleTroubleshooting List Fault Description Solution Siemens Energy & Automation, Inc. All Rights Reserved Siemens Energy & Automation, Inc