Viking CDMOS200, CVMOS200 service manual Troubleshooting Guide, When the testing is completed

Page 14

CDMOS200

DMOS200

VMOS200

CVMOS200

TROUBLESHOOTING GUIDE

Never touch any part in the circuit with your hand or an uninsulated tool while the power supply is connected.

When troubleshooting the microwave oven, it is helpful to follow the Sequence of Operation in performing the checks. Many of the possible causes of trouble will require that a specific test be performed. These tests are given a procedure letter which will be found in the "Test Procedure "section.

IMPORTANT: If the oven becomes inoperative because of a blown monitor fuse, check the primary switch, and monitor switch, before replacing the monitor fuse. If the monitor fuse is replaced, the monitor switch must also be replaced. Use part FFS-BA016/KIT as an assembly.

IMPORTANT: Whenever troubleshooting is performed with the power supply cord disconnected. It may in, some cases, be necessary to connect the power supply cord after the outer case has been removed, in this event,

1.Disconnect the power supply cord, and then remove outer case.

2.Open the door and block it open.

3.Discharge high voltage capacitor.

4.Disconnect the leads to the primary of the power transformer.

5.Ensure that the leads remain isolated from other components and oven chassis by using insulation tape.

6.After that procedure, reconnect the power supply cord.

When the testing is completed

1.Disconnect the power supply cord, and then remove outer case.

2.Open the door and block it open.

3.Discharge high voltage capacitor.

4.Reconnect the leads to the primary of the power transformer.

5.Reinstall the outer case (cabinet).

6.Reconnect the power supply cord after the outer case is installed.

7.Run the oven and check all functions.

12

Image 14
Contents Table of Contents Models CDMOS200 VMOS200Before Servicing CDMOS200 VMOS200 CVMOS200 When the testing is completed Before ServicingRequirements Microwave Measurement Procedure CanadaLeakage test with enclosure installed Leakage test without enclosureMicrowave Measurement Procedure USA Leakage testMicrowave Ovens DMOS200 CDMOS200 VMOS200 CVMOS200 Foreword If provided, Vent Hood, Fan assembly, Cooling Fan MotorViking Range Corporation Description SpecificationGeneral Information Grounding InstructionsVMOS200 model shown Oven DiagramMove the Round Grounding Prong from this Plug Description of Operating Sequence Power Level P-0 to P-90 CookingOperation OFF ConditionSensor Cooking Condition Cooking SequenceSchematic Door Closed Clock Appears on Display Imar Y IT C H C O Ndar Y S W IT C HDescription and Function of Components Troubleshooting Guide Problem Test ProceduresTest Procedure Procedure Letter Component Test Magnetron Assembly TestPower Transformer Test Procedure Letter Component TestMicrowave Output Power Magnetron Temperature Fuse Test Procedure Letter Component Test High Voltage Rectifier TestCavity Temperature Fuse Test High Voltage Capacitor TestSecondary Interlock System Test Door Sensing SwitchMonitor Switch Test Secondary Interlock Relay RY2Blown Monitor Fuse Test Touch Control Panel Assembly TestBefore testing Test Procedures KEY Unit TestCompu Defrost Test Weight 1ST Stage 2ND Stage Level TimeRelay Test Occurrence Cause or Correction Steps Occurrence Cause or CorrectionChecking the initial sensor cooking condition Testing Method for AH Sensor and /OR Control UnitAH Sensor Test Water load cooking testProcedure Letter Component Test Checking Control Unit Procedure Letter Component Test Noise Filter Test Measuring Point Indication of OHM-METERTouch Control Panel Assembly LSIIXA098DR Signal coming from touch key Signal synchronized with commercial power source frequencyKey strobe signal Signal similar to P17Pin No Power source voltage GND0VInternal clock oscillation frequency control input setting AH sensor inputSEG Segment data signalCommon data signal COM10 COM7 OUTAbsolute Humidity Sensor Circuit Structure of Absolute Humidity SensorServicing Tools Other PrecautionsTouch Control Panel Servicing Component Replacement and Adjustment Procedure Outer Case RemovalHigh Voltage Rectifier and High Voltage Capacitor Removal Power Transformer RemovalRe-install Magnetron RemovalOven Lamp and Lamp Socket Removal Positive Lock Connector NO-CASE Type RemovalControl Panel Assembly Removal Turntable Motor RemovalCooling FAN Motor Removal AH Sensor ReplacementRE-INSTALL RemovalDoor Replacement After adjustment, check the followingSealer Film After any service, make sure of the followingInstallation Diagram HIG H Voltag E C OmponeFigure S-2 Power Unit Circuit Circuit Figure S-3 CPUUnitFigure S-5 Printed Wiring Board of Power Unit Cabinet Parts Parts ListElectric Parts Control Panel PartsSCREWS,NUTS and Washers Door PartsMiscellaneous Oven and Cabinet Parts Control Panel Parts Door Parts Miscellaneous Packing and Accessories Copyright 2002 by Viking
Related manuals
Manual 45 pages 12.01 Kb

CVMOS200, CDMOS200, DMOS200, VMOS200 specifications

The Viking VMOS200, DMOS200, CDMOS200, and CVMOS200 are advanced products designed for telecommunications and power management applications. Each model showcases unique features and technologies that make them stand out in their respective fields.

The VMOS200 is built on the vertical MOSFET technology, allowing for optimized performance in high-power applications. This device excels in switching capabilities and minimizing conduction losses, leading to improved efficiency. The VMOS200 is ideal for use in power amplifiers and high-frequency applications, where reliable performance and thermal stability are crucial. Its rugged design ensures that it can withstand harsh environments, making it a preferred choice for industrial and aerospace applications.

Next, the DMOS200 employs a double-diffused MOSFET technology, which enhances its thermal performance and power handling capabilities. This model is particularly effective in low-voltage applications where efficiency is paramount. The DMOS200 features a low on-resistance characteristic, allowing for reduced energy loss during operation. Its fast switching speed enables high-frequency operation, making it suitable for RF amplifiers and motor drives.

The CDMOS200 introduces a charge-balanced design, optimizing the allocation of charge carriers within the device to minimize heat generation and improve efficiency. This model is tailored for demanding applications in communications where signal integrity and power efficiency are critical. With its high breakdown voltage and robust construction, the CDMOS200 can handle more demanding operational conditions, making it popular in cellular and satellite communication systems.

Lastly, the CVMOS200 combines the advantages of vertical and charge-balanced technologies, offering a versatile solution for a broad range of applications. This hybrid design provides high efficiency, exceptional reliability, and enhanced thermal management. The CVMOS200 is particularly well-suited for switching power supplies and audio amplification. Its compact footprint allows for integration into space-constrained designs while maintaining high performance.

In summary, the Viking series of devices—VMOS200, DMOS200, CDMOS200, and CVMOS200—offer a range of features, technologies, and characteristics tailored to meet the demands of modern power electronics and telecommunications. With their robust designs, high efficiency, and adaptability to various applications, these devices are integral components for engineers and designers looking to create cutting-edge technological solutions.