Greenheck Fan ERV-582, ERV-581, ERV-522 Electrical Information, Field Control Wiring Length/Gauge

Page 8

Electrical Information

The unit must be electrically grounded in accordance with the current National Electrical Code, ANSI/NFPA

70.In Canada, use current CSA Standard C22.1, Canadian Electrical Code, Part 1. In addition, the installer should be aware of any local ordinances or electrical company requirements that might apply. System power wiring must be properly fused and conform to the local and national electrical codes. System power wiring is to the unit main disconnect (door interlocking disconnect switch standard

on most units) or distribution block and must be compatible with the ratings on the nameplate: supply power voltage, phase, and amperage (Minimum Circuit Amps - MCA, Maximum Overcurrent Protection - MOP). All wiring beyond this point has been done by the manufacturer and cannot be modified without affecting the unit’s agency / safety certification.

If field installing an additional disconnect switch, it is recommended that there is at least four feet of service room between the switch and system access panels. When providing or replacing fuses in a fusible disconnect, use dual element time delay fuses and size according to the rating plate.

If power supply is desired through bottom of unit, run the wiring through the curb, cut a hole in the cabinet bottom, and wire to the disconnect switch. Seal penetration in cabinet bottom to prevent leakage.

The electric supply to the unit must meet stringent requirements for the system to operate properly. Voltage supply and voltage imbalance between phases should be within the following tolerances. If the power is not within these voltage tolerances, contact the power company prior to operating the system.

Voltage Supply: See voltage use range on the rating plate. Measure and record each supply leg voltage at all line disconnect switches. Readings must fall within the allowable range on the rating plate.

Voltage Imbalance: In a 3-phase system, excessive voltage imbalance between phases will cause motors to overheat and eventually fail. Maximum allowable imbalance is 2%. To determine voltage imbalance, use recorded voltage measurements in this formula.

Key: V1, V2, V3 = line voltages as measured VA (average) = (V1 + V2 + V3) / 3

VD = Line voltage (V1, V2 or V3) that deviates farthest from average (VA)

Formula: % Voltage Imbalance = [100 x (VA-VD)] / VA

CAUTION

If any of the original wire as supplied with the appliance must be replaced, it must be replaced with wiring material having a temperature rating of at least 105ºC.

8Model ERV Energy Recovery Unit

WARNING

To prevent injury or death due to electrocution or contact with moving parts, lock disconnect switch open.

Most factory supplied electrical components are prewired. To determine what electrical accessories require additional field wiring, refer to the unit specific wiring diagram located on the inside of the unit control center access door. The low voltage control circuit is 24 VAC and control wiring should not exceed 0.75 ohms.

Refer to Field Control Wiring Length/Gauge table for wire length maximums for a given wire gauge.

Field Control Wiring Length/Gauge

Total

Minimum

Wire Length

Wire Gauge

125 ft.

18

200 ft.

16

300 ft.

14

450 ft.

12

Control wires should not be run inside the same conduit as that carrying the supply power. Make sure that field supplied conduit does not interfere with access panel operation.

If wire resistance exceeds 0.75 ohms, an industrial- style, plug-in relay should be added to the unit control center and wired in place of the remote switch (typically between terminal blocks R and G on the terminal strip (refer to Typical Control Center Components). The relay must be rated for at least 5 amps and have a 24 VAC coil. Failure to comply with these guidelines may cause motor starters to “chatter” or not pull in which can cause contactor failures and/or motor failures.

Image 8
Contents General Safety Information Models ERV-251 ERV-361 ERV-521 ERV-581 ERV-522 ERV-582Inspection and Maintenance during Storage ReceivingUnpacking HandlingTable of Contents Supplemental Installation Operation and Maintenance ManualsInstallation Basic OperationLifting Recommended Roof OpeningCurb Outside Dimensions and Weights Curb Outside DimensionsRoof Curb Mounting Ductwork ConnectionsRail Mounting / Layout Service Clearances ERV-251, ERV-361, ERV-521, ERV-581 ERV-522, ERV-582Arrangement a Arrangement B, C or DField Control Wiring Length/Gauge Electrical InformationUnit Accessories Access Panel Description and Location ERV-251, ERV-361, ERV-521, ERV-581 ERV-522Outdoor Air Dimensional Data ERV-522 Unit Size Exterior Dimensions Arrangement C Arrangement DFrost Control Application/Operation Optional AccessoriesFrost Threshold Temperatures Indoor RH @ 70F Testing Temperature Sensor with Override Economizer Application/OperationModulating the Wheel Enthalpy Sensor with OverrideDrive Operation Variable Frequency Drives for Energy Recovery BlowersFactory Set Points Variable Frequency Drives for Energy Recovery Wheel Resetting the drive to factory defaultsEconomizer Signal Source 10 VDCTypical Wiring Diagram TransformerService Outlet Rotation SensorDirty Filter Sensor CO2 SensorRemote Control Panel and Wiring Schematics Indicator Lights powered by the ER UnitDay Timer or On/Off Switch Hand/Off/Auto SwitchTemperature Sensors 1K Ohm RTD Sensors Mounted by FactoryPressure Sensors analog or digital Amp Current Sensors analog or digitalPre Start-Up Checklist check as items are Start-Up ChecklistStart-Up General Start-Up InformationOptional Accessories Checklist Optional Accessories sectionEconomizer Application / Operation section Variable Frequency Drives sectionUnit Start-Up Energy Recovery Wheel VibrationDrive Belt Air SealsRoutine Maintenance Maintenance Procedures LubricationFan Belts Fan MotorsExternal Filter Maintenance Door Seal MaintenanceEnergy Recovery Wheel Maintenance Internal Filter MaintenanceWheel segment removed Accessing the Energy Recovery Wheel in Models ERV-522Removing the Energy Recovery Wheel in ERV-251 Energy Recovery Wheel Bearing Cleaning the Energy Recovery WheelEnergy Recovery Wheel Belt Parts List Inside layout of ERV-361 Inside layout of ERV-522Other Accessories Sequence of OperationBasic Unit Summer OperationTroubleshooting Airflow Troubleshooting Unit Symptom Possible Cause Corrective ActionTroubleshooting Unit Maintenance Log Warranty

ERV-361, ERV-251, ERV-521, ERV-582, ERV-522 specifications

Greenheck Fan has established itself as a leader in the design and manufacturing of high-performance ventilation systems, including its innovative energy recovery ventilators (ERVs). Among their popular models are the ERV-581, ERV-522, ERV-582, ERV-521, and ERV-251, each designed to enhance indoor air quality while optimizing energy efficiency.

The ERV-581 offers comprehensive ventilation solutions for commercial buildings, equipped with advanced heat recovery technology. This model features a robust, compact design, allowing for easy installation in limited spaces. Its efficient energy recovery capabilities transfer heat and moisture between incoming and outgoing airstreams, leading to significant reductions in heating and cooling costs. The ERV-581 also includes a user-friendly control panel for simplified operation.

Next in line, the ERV-522 is engineered for larger spaces, balancing higher airflow rates with enhanced energy recovery performance. This model is particularly beneficial for schools and office buildings, where maintaining fresh air quality is paramount. The ERV-522 employs a two-stage filtration system, ensuring that airborne pollutants are effectively captured before being circulated back into the environment. Its resilient construction further ensures longevity and durability in demanding applications.

The ERV-582 enhances the lineup with its dual-function capability, serving both as an energy recovery ventilator and a dehumidification system. This flexibility makes it an ideal choice for climates with high humidity levels, where moisture control is essential. The ERV-582 incorporates Greenheck’s patented technology for optimal performance under varying temperature and humidity conditions, making it a versatile solution for diverse environments.

The ERV-521 stands out with its eco-friendly design, featuring recyclable components that align with sustainable building practices. This model is particularly favored in LEED-certified projects, where energy efficiency and minimal environmental impact are essential. The ERV-521 also includes an intelligent control system that adjusts airflow rates based on occupancy levels, ensuring optimal energy usage.

Finally, the ERV-251 is a compact, energy-efficient model suited for residential installations. It is designed to fit seamlessly into homes, providing essential ventilation while reducing energy consumption. The user-friendly interface allows homeowners to monitor and adjust settings easily, making the ERV-251 a popular choice for those looking to improve indoor air quality without compromising on comfort.

Together, these Greenheck ERV models exemplify cutting-edge technologies and engineering, paving the way for healthier indoor environments while promoting energy conservation. Each unit is tailored to meet specific application needs, making them invaluable assets for any ventilation strategy.