Figure 2-2. Partial Command Tree

Active Header Path

In order to properly traverse the command tree, you must understand the concept of the active header path. When the power supply is turned on (or under any of the other conditions listed above), the active path is at the root. That means the interface is ready to accept any command at the root level, such as TRIGger or STATus in Figure 2-2. Note that you do not have to precede either command with a colon; there is an implied colon in front of every root-level command.

If you enter STATUS, the active header path moves one colon to the right. The interface is now ready to accept : OPERATION, :PRESET, or QUESTIONABLE as the next header. Note that you must include the colon, because it is required between headers.

If you next enter :OPERATION, the active path again moves one colon to the right. The interface is now ready to accept :EVENT?, CONDITON?, ENABLE, NTRANSITION, or PTRANSITION as the next header.

If you now enter :ENABLE, you have reached the end of the command string. The active header path remains at :ENABLE. If you wished, you could have entered :ENABLE 18;PTRANSITION 18 and it would be accepted. The entire message would be STATUS:OPERATION:ENABLE 18;PTRANSITION 18. The message terminator after PTRANSITION 18 returns the path to the root.

The Effect of Optional Headers

If a command includes optional headers, the interface assumes they are there. For example, if you enter STATUS: OPERATION?, the interface recognizes it as STATUS: OPERATION: EVENT? (see Figure 2-2). This returns the active path to the root (:STATUS). But if you enter STATUS: OPERATION: EVENT?, then the active path remains at :EVENT. This allows you to send STATUS: OPERATION: EVENT?; CONDITION? in one message. If you tried to send STATUS:OPERATION?;CONDITION? the command path would send STATUS:OPERATION:EVENT? and then return to :STATUS instead of to :CONDITION.

The optional header SOURCE precedes the current, digital, and voltage subsystems (see Figure 3-2). This effectively makes :CURRENT, :DIGITAL, and :VOLTAGE root-level commands.

Moving Among Subsystems

In order to combine commands from different subsystems, you need to be able to restore the active path to the root. You do this with the root specifier (:). For example, you could clear the output protection and check the status of the Operation Condition register as follows (see Figure 3-2):

OUTPUT:PROTECTION:CLEAR

STATUS:OPERATION:CONDITION?

By using the root specifier, you could do the same thing in one message:

OUTPUT:PROTECTION:CLEAR;:STATUS:OPERATION:CONDITION?

Remote Programming 13

Page 13
Image 13
Agilent Technologies 669xA, 665xA, 664xA, 667xA, 668xA manual Effect of Optional Headers, Moving Among Subsystems

668xA, 669xA, 667xA, 664xA, 665xA specifications

Agilent Technologies has long been a pioneer in the production of high-performance electronic test and measurement instruments, particularly in the field of power sources. Among its notable offerings are the Agilent 667xA, 669xA, 665xA, 664xA, and 668xA series of power supplies. These instruments are designed to provide stable, reliable power for a variety of applications, including electronic testing, industrial processes, and research laboratories.

The Agilent 667xA series is characterized by its programmability and advanced measurement functions. These power supplies support a wide range of output voltages and currents, allowing for flexible configurations that cater to different testing needs. The built-in measurement capabilities enable users to monitor the voltage, current, and power with high precision, which is essential for ensuring optimal performance in electronic applications.

The Agilent 669xA series stands out with its high-power outputs, making it suitable for demanding applications. These power supplies deliver high voltage and current levels, making them ideal for testing high-performance devices, such as power amplifiers and motor drives. Additionally, the 669xA series includes features such as overvoltage protection and complex output sequencing to enhance the safety and reliability of the testing process.

The Agilent 665xA and 664xA series focus on delivering high accuracy and excellent regulation. These models are particularly known for their low noise operation, which is critical for sensitive applications where precision is paramount. The integrated programming capabilities allow users to automate testing sequences, thus improving efficiency in research and development settings.

The 668xA series features advanced digital signal processing that enhances the precision and stability of the output. Users benefit from features like remote sensing and monitoring, allowing feedback adjustments that maintain output accuracy despite cable losses. Furthermore, the 668xA models can integrate seamlessly with various test environments thanks to their LAN, GPIB, and USB connectivity options.

Overall, the Agilent 667xA, 669xA, 665xA, 664xA, and 668xA power supplies provide a comprehensive range of solutions for diverse electronic testing needs. With their advanced features, superb measurement capabilities, and robust performance, these instruments empower engineers and researchers to conduct their work with confidence, precision, and efficiency.