Bryant 551C 551B,C, and LED Locations, Indoor Air Quality IAQ Sensor Input, Damper Movement

Models: 551B

1 61
Download 61 pages 53.59 Kb
Page 28
Image 28
and LED Locations

551B,C

C06034

Fig. 33 ---EconoMi$er IV Controller Potentiometer

and LED Locations

Replace the standard outside air dry bulb temperature sensor with the accessory enthalpy sensor in the same mounting location. (See Fig. 21.) Mount the return air enthalpy sensor in the return air duct. (See Fig. 35.) Wiring is provided in the EconoMi$er IV wiring harness. (See Fig. 27.) The outdoor enthalpy changeover set point is set with the outdoor enthalpy set point potentiometer on the EconoMi$er IV controller. When using this mode of changeover control, turn the enthalpy setpoint potentiometer fully clockwise to the D setting.

Indoor Air Quality (IAQ) Sensor Input

The IAQ input can be used for demand control ventilation control based on the level of CO2 measured in the space or return air duct.

Mount the accessory IAQ sensor according to manufacturer specifications. The IAQ sensor is wired to the AQ and AQ1 terminals of the controller. Adjust the DCV potentiometers to correspond to the DCV voltage output of the indoor air quality sensor at the user-determined set point. (See Fig. 38.)

If a separate field-supplied transformer is used to power the IAQ sensor, the sensor must not be grounded or the EconoMi$er IV control board will be damaged.

Exhaust Set Point Adjustment

The exhaust set point will determine when the exhaust fan runs based on damper position (if accessory power exhaust is installed). The set point is modified with the Exhaust Fan Set Point (EXH SET) potentiometer. (See Fig. 33.) The set point represents the damper position above which the exhaust fans will be turned on. When there is a call for exhaust, the EconoMi$er IV controller provides a 45 ± 15 second delay before exhaust fan activation to allow the dampers to open. This delay allows the damper to reach the appropriate position to avoid unnecessary fan overload.

Minimum Position Control

There is a minimum damper position potentiometer on the EconoMi$er IV controller. (See Fig. 33.) The minimum damper position maintains the minimum airflow into the building during the occupied period.

When using demand ventilation, the minimum damper position represents the minimum ventilation position for VOC (volatile organic compound) ventilation requirements. The maximum demand ventilation position is used for fully occupied ventilation.

When demand ventilation control is not being used, the minimum position potentiometer should be used to set the occupied ventilation position. The maximum demand ventilation position should be turned fully clockwise.

Adjust the minimum position potentiometer to allow the minimum amount of outdoor air, as required by local codes, to enter the building. Make minimum position adjustments with at least 10_F temperature difference between the outdoor and return-air temperatures.

To determine the minimum position setting, perform the following procedure:

1.Calculate the appropriate mixed air temperature using the following formula:

(TO x 100OA ) + (TR x 100RA ) =TM

TO = Outdoor-Air Temperature OA = Percent of Outdoor Air TR = Return-Air Temperature RA = Percent of Return Air TM = Mixed-Air Temperature

As an example, if local codes require 10% outdoor air during occupied conditions, outdoor-air temperature is 60_F, and return-air temperature is 75_F.

(60 x .10) + (75 x .90) = 73.5_F

2.Disconnect the supply air sensor from terminals T and T1.

3.Ensure that the factory-installed jumper is in place across terminals P and P1. If remote damper positioning is being used, make sure that the terminals are wired according to Fig. 27 and that the minimum position potentiometer is turned fully clockwise.

4.Connect 24 vac across terminals TR and TR1.

5.Carefully adjust the minimum position potentiometer until the measured supply air temperature matches the calculated value.

6.Reconnect the mixed air sensor to terminals T and T1.

Remote control of the EconoMi$er IV damper is desirable when requiring additional temporary ventilation. If a field-supplied remote potentiometer (Honeywell part number S963B1128) is wired to the EconoMi$er IV controller, the minimum position of the damper can be controlled from a remote location.

To control the minimum damper position remotely, remove the factory-installed jumper on the P and P1 terminals on the EconoMi$er IV controller. Wire the field-supplied potentiometer to the P and P1 terminals on the EconoMi$er IV controller. (See Fig. 37.)

Damper Movement

Damper movement from full open to full closed (or vice versa) takes 21/2 minutes.

Thermostats

The EconoMi$er IV control works with conventional thermostats that have a Y1 (cool stage 1), Y2 (cool stage 2), W1 (heat stage 1), W2 (heat stage 2), and G (fan). The EconoMi$er IV control does not support space temperature sensors. Connections are made at the thermostat terminal connection board located in the main control box.

28

Page 28
Image 28
Bryant 551B,C, and LED Locations, Indoor Air Quality IAQ Sensor Input, Exhaust Set Point Adjustment, Damper Movement