Implementing Routing Policy on Cisco IOS XR Software

Information About Implementing Routing Policy

The following prefix-set consists entirely of invalid prefix match specifications:

prefix-set ILLEGAL-PREFIX-EXAMPLES

10.1.1.1ge 16,

10.1.2.1le 16,

10.1.3.0/24 le 23, 10.1.4.0/24 ge 33, 10.1.5.0/25 ge 29 le 28

end-set

Neither the minimum length nor maximum length is valid without a mask length. The maximum length must be at least the mask length. For IPv4, the minimum length must be less than 32, the maximum length of an IPv4 prefix. For IPv6, the minimum length must be less than 128, the maximum length of an IPv6 prefix. The maximum length must be equal to or greater than the minimum length.

Routing Policy Language Components

Four main components in the routing policy language are involved in defining, modifying, and using policies: the configuration front end, policy repository, execution engine, and policy clients themselves.

The configuration front end (CLI) is the mechanism to define and modify policies. This configuration is then stored on the router using the normal storage means and can be displayed using the normal configuration show commands.

The second component of the policy infrastructure, the policy repository, has several responsibilities. First, it compiles the user-entered configuration into a form that the execution engine can understand. Second, it performs much of the verification of policies; and it ensures that defined policies can actually be executed properly. Third, it tracks which attach points are using which policies so that when policies are modified the appropriate clients are properly updated with the new policies relevant to them.

The third component is the execution engine. This component is the piece that actually runs policies as the clients request. The process can be thought of as receiving a route from one of the policy clients and then executing the actual policy against the specific route data.

The fourth component is the policy clients (the routing protocols). This component calls the execution engine at the appropriate times to have a given policy be applied to a given route, and then perform some number of actions. These actions may include deleting the route if policy indicated that it should be dropped, passing along the route to the protocol decision tree as a candidate for the best route, or advertising a policy modified route to a neighbor or peer as appropriate.

Routing Policy Language Usage

This section provides basic routing policy language usage examples. See the “How to Implement Routing Policy” section on page RC-237for detailed information on how to implement routing policy language.

The pass policy

The following example shows how the policy accepts all presented routes without modifying the routes.

route-policy quickstart-pass pass

end-policy

The drop everything policy

The following example shows how the policy explicitly rejects all routes presented to it. This type of policy is used to ignoring everything coming from a misbehaving peer.

Cisco IOS XR Routing Configuration Guide

RC-211

Page 227
Image 227
Cisco Systems IOS XR manual Routing Policy Language Components, Routing Policy Language Usage, Pass policy, RC-211

IOS XR specifications

Cisco Systems IOS XR is an advanced operating system designed specifically for high-performance routers and service provider networks. It serves as the backbone for many of Cisco's high-end routing platforms, enabling service providers to manage their networks with increased efficiency, flexibility, and scalability.

One of the main features of IOS XR is its modular architecture. This allows for the independent operation of various components within the OS, facilitating the deployment of new features and updates without affecting the overall stability of the system. This modularity ensures that service providers can implement rapid changes and enhancements while maintaining service continuity.

Another characteristic of IOS XR is its support for 64-bit architecture, which provides enhanced performance and the ability to manage larger amounts of data. This is particularly beneficial for service providers that deal with high traffic volumes and require robust data processing capabilities. The utilization of 64-bit technology also enables the operating system to utilize memory more efficiently, allowing for greater scalability.

IOS XR incorporates advanced technologies such as Distributed System Architecture (DSA) and Multiple Routing Instances (Merging Routes). DSA allows for the distribution of routing processes across multiple hardware resources, maximizing performance and redundancy. Multiple Routing Instances enable operators to create separate logical routing tables for different services, improving isolation and efficiency in managing network traffic.

The operating system also focuses heavily on security, featuring extensive encryption methods and access controls to safeguard network resources. IOS XR supports various authentication protocols, ensuring secure access to routers and switches. In addition, the OS includes comprehensive logging and monitoring capabilities, allowing network administrators to track activities and respond quickly to potential threats.

Another critical aspect of IOS XR is its adherence to the principles of service-oriented architecture (SOA). This approach permits the development of applications and services that can operate independently, fostering innovation and enabling service providers to tailor their offerings based on customer demands.

Ultimately, Cisco IOS XR is a powerful, reliable operating system that meets the complex needs of modern telecommunications networks. With its focus on modularity, performance, security, and scalability, it enables service providers to deliver high-quality, resilient services to their customers while efficiently managing network resources. As the industry continues to evolve, IOS XR remains a vital tool for those aiming to stay competitive in the ever-changing landscape of networking.