Implementing and Monitoring RIB on Cisco IOS XR Software

Information About RIB Configuration

RIB Administrative Distance

Forwarding is done based on the longest prefix match. If you are forwarding a packet destined to 10.0.2.1, you prefer 10.0.2.0/24 over 10.0.0.0/16 because the mask /24 is longer (and more specific) than a /16.

Routes from different protocols that have the same prefix and length are chosen based on administrative distance. For instance, the Open Shortest Path First (OSPF) protocol has an administrative distance of 110, and the Intermediate System-to-Intermediate System (IS-IS) protocol has an administrative distance of 115. If IS-IS and OSPF both download 10.0.1.0/24 to RIB, RIB would prefer the OSPF route because OSPF has a lower administrative distance. Administrative distance is used only to choose between multiple routes of the same length.

The default administrative distances for the common protocols are shown in Table 2.

Table 2

Default Administrative Distances

 

 

 

 

Protocol

 

Administrative Distance Default

 

 

Connected or local routes

0

 

 

Static routes

1

 

 

External BGP routes

20

 

 

OSPF routes

110

 

 

IS-IS routes

115

 

 

Internal BGP routes

200

 

 

 

The administrative distance for some routing protocols (for instance IS-IS, OSPF, and BGP) can be changed. See the protocol-specific documentation for the proper method to change the administrative distance of that protocol.

Note Changing the administrative distance of a protocol on some but not all routers can lead to routing loops and other undesirable behavior. Doing so is not recommended.

RIB Support for IPv4 and IPv6

In Cisco IOS XR software, RIB tables support multicast and unicast routing.

The default routing table for Cisco IOS XR RIB are the unicast and the multicast-unicast RIB tables for IPv4 and IPv6 routing, respectively. For multicast routing, routing protocols insert unicast routes into the multicast-unicast RIB table. Multicast protocols then use the information to build multicast routes (which in turn are stored in the MRIB). See the multicast documentation for more information on using and configuring multicast.

RIB processes ipv4_rib and ipv6_rib run on the RP card. If process placement functionality is available and supported by multiple RPs in the router, RIB processes can be placed on any available node.

Cisco IOS XR Routing Configuration Guide

RC-197

Page 213
Image 213
Cisco Systems IOS XR RIB Administrative Distance, RIB Support for IPv4 and IPv6, Protocol Administrative Distance Default

IOS XR specifications

Cisco Systems IOS XR is an advanced operating system designed specifically for high-performance routers and service provider networks. It serves as the backbone for many of Cisco's high-end routing platforms, enabling service providers to manage their networks with increased efficiency, flexibility, and scalability.

One of the main features of IOS XR is its modular architecture. This allows for the independent operation of various components within the OS, facilitating the deployment of new features and updates without affecting the overall stability of the system. This modularity ensures that service providers can implement rapid changes and enhancements while maintaining service continuity.

Another characteristic of IOS XR is its support for 64-bit architecture, which provides enhanced performance and the ability to manage larger amounts of data. This is particularly beneficial for service providers that deal with high traffic volumes and require robust data processing capabilities. The utilization of 64-bit technology also enables the operating system to utilize memory more efficiently, allowing for greater scalability.

IOS XR incorporates advanced technologies such as Distributed System Architecture (DSA) and Multiple Routing Instances (Merging Routes). DSA allows for the distribution of routing processes across multiple hardware resources, maximizing performance and redundancy. Multiple Routing Instances enable operators to create separate logical routing tables for different services, improving isolation and efficiency in managing network traffic.

The operating system also focuses heavily on security, featuring extensive encryption methods and access controls to safeguard network resources. IOS XR supports various authentication protocols, ensuring secure access to routers and switches. In addition, the OS includes comprehensive logging and monitoring capabilities, allowing network administrators to track activities and respond quickly to potential threats.

Another critical aspect of IOS XR is its adherence to the principles of service-oriented architecture (SOA). This approach permits the development of applications and services that can operate independently, fostering innovation and enabling service providers to tailor their offerings based on customer demands.

Ultimately, Cisco IOS XR is a powerful, reliable operating system that meets the complex needs of modern telecommunications networks. With its focus on modularity, performance, security, and scalability, it enables service providers to deliver high-quality, resilient services to their customers while efficiently managing network resources. As the industry continues to evolve, IOS XR remains a vital tool for those aiming to stay competitive in the ever-changing landscape of networking.