Implementing Routing Policy on Cisco IOS XR Software

Information About Implementing Routing Policy

The statements within an if statement may themselves be if statements, as shown in the following example:

if community matches-any (12:34,56:78) then if med eq 150 then

drop

endif

set local-preference 100

endif

This policy example sets the value of the local preference attribute to 100 on any route that has a community value of 12:34 or 56:78 associated with it. However, if any of these routes has a MED value of 150, then these routes with either the community value of 12:34 or 56:78 and a MED of 150 are dropped.

Boolean Conditions

In the previous section describing the if statement, all of the examples use simple Boolean conditions that evaluate to either true or false. RPL also provides a way to build compound conditions from simple conditions by means of Boolean operators.

Three Boolean operators exist: negation (not), conjunction (and), and disjunction (or). In the policy language, negation has the highest precedence, followed by conjunction, and then by disjunction. Parentheses may be used to group compound conditions to override precedence or to improve readability.

The following simple condition:

med eq 42

is true only if the value of the MED in the route is 42, otherwise it is false.

A simple condition may also be negated using the not operator:

not next-hop in (10.0.2.2)

Any Boolean condition enclosed in parentheses is itself a Boolean condition:

(destination in prefix-list-1)

A compound condition takes either of two forms. It can be a simple expression followed by the and operator, itself followed by a simple condition:

med eq 42 and next-hop in (10.0.2.2)

A compound condition may also be a simpler expression followed by the or operator and then another simple condition:

origin is igp or origin is incomplete

An entire compound condition may be enclosed in parentheses:

(med eq 42 and next-hop in (10.0.2.2))

The parentheses may serve to make the grouping of subconditions more readable, or they may force the evaluation of a subcondition as a unit.

In the following example, the highest-precedence not operator applies only to the destination test, the and operator combines the result of the not expression with the community test, and the or operator combines that result with the MED test.

med eq 10 or not destination in (10.1.3.0/24) and community matches-any ([12..34]:[56..78])

Cisco IOS XR Routing Configuration Guide

RC-222

Page 238
Image 238
Cisco Systems IOS XR manual Boolean Conditions, RC-222

IOS XR specifications

Cisco Systems IOS XR is an advanced operating system designed specifically for high-performance routers and service provider networks. It serves as the backbone for many of Cisco's high-end routing platforms, enabling service providers to manage their networks with increased efficiency, flexibility, and scalability.

One of the main features of IOS XR is its modular architecture. This allows for the independent operation of various components within the OS, facilitating the deployment of new features and updates without affecting the overall stability of the system. This modularity ensures that service providers can implement rapid changes and enhancements while maintaining service continuity.

Another characteristic of IOS XR is its support for 64-bit architecture, which provides enhanced performance and the ability to manage larger amounts of data. This is particularly beneficial for service providers that deal with high traffic volumes and require robust data processing capabilities. The utilization of 64-bit technology also enables the operating system to utilize memory more efficiently, allowing for greater scalability.

IOS XR incorporates advanced technologies such as Distributed System Architecture (DSA) and Multiple Routing Instances (Merging Routes). DSA allows for the distribution of routing processes across multiple hardware resources, maximizing performance and redundancy. Multiple Routing Instances enable operators to create separate logical routing tables for different services, improving isolation and efficiency in managing network traffic.

The operating system also focuses heavily on security, featuring extensive encryption methods and access controls to safeguard network resources. IOS XR supports various authentication protocols, ensuring secure access to routers and switches. In addition, the OS includes comprehensive logging and monitoring capabilities, allowing network administrators to track activities and respond quickly to potential threats.

Another critical aspect of IOS XR is its adherence to the principles of service-oriented architecture (SOA). This approach permits the development of applications and services that can operate independently, fostering innovation and enabling service providers to tailor their offerings based on customer demands.

Ultimately, Cisco IOS XR is a powerful, reliable operating system that meets the complex needs of modern telecommunications networks. With its focus on modularity, performance, security, and scalability, it enables service providers to deliver high-quality, resilient services to their customers while efficiently managing network resources. As the industry continues to evolve, IOS XR remains a vital tool for those aiming to stay competitive in the ever-changing landscape of networking.