Software Functional Overview

If a standard single-speed fan is the Active cooling device, then the policy is represented by the temperature to which _AC0 evaluates, and the fan is listed in _AL0.

If the zone uses two independently-controlled single-speed fans to regulate the temperature, then _AC0 will evaluate to the maximum cooling temperature using two fans, and _AC1 will evaluate to the standard cooling temperature using one fan.

If a zone has a single fan with a low speed and a high speed, the _AC0 will evaluate to the temperature associated with running the fan at high-speed, and _AC1 will evaluate to the temperature associated with running the fan at low speed. _AL0 and _AL1 will both point to different device objects associated with the same physical fan, but control the fan at different speeds.

3.6.5Passive Cooling Equation

Unlike the case for _ACx, during passive cooling the OS takes the initiative to actively monitor the temperature in order to cool the platform. On an ACPI-compatible platform that properly implements CPU throttling, the temperature transitions will be similar to the following figure.

Temperature

Tn - 1

ΔP

 

 

Tn

 

 

Tt

 

 

 

_TSP (Sampling period)

 

 

Time

100%

CPU Performance

50%

For the OS to assess the optimum CPU performance change required to bring the temperature down, the following equation must be incorporated into the OS.

ΔP [%] = _TC1 * ( Tn - Tn-1 ) + _TC2 * (Tn - Tt) where

Tn = current temperature

Tt = target temperature (_PSV)

The two coefficients _TC1 and _TC2 and the sampling period _TSP are hardware-dependent constants the OEM must supply to the OS (for more information, see section 12.3). The object _TSP contains a time interval that the OS uses to poll the hardware to sample the temperature. Whenever _TSP time has elapsed, the OS will run _TMP to sample the current temperature (shown as Tn in the above equation). Then the OS will use the sampled temperature and _PSV (which is the target temperature Tt) to evaluate the equation for ΔP.

3-30

FIC M295 / M296 Service Manual

Page 80
Image 80
FIC M295, M296 service manual Passive Cooling Equation

M296, M295 specifications

The FIC M295 and M296 are modern military vehicles designed for versatility, durability, and efficiency in various operational environments. Both models have gained attention for their advanced features and technological integrations, making them suitable for a range of missions, including logistics, reconnaissance, and troop transport.

One of the standout features of the FIC M295 and M296 is their modular design. This allows for easy configuration based on specific mission requirements. Whether deployed in urban settings or rugged terrains, these vehicles can be outfitted with different payloads and weaponry, enhancing their adaptability and usability. The modularity extends to interior configurations, offering flexibility in troop transport or cargo capacity.

The M295 boasts a robust powertrain, equipped with a high-torque engine that provides excellent off-road capability. Coupled with advanced suspension systems, the vehicle can traverse difficult landscapes while maintaining stability and comfort for its occupants. The M296, on the other hand, offers a slightly different engine configuration, focusing on fuel efficiency without compromising power. Both models are engineered to operate in extreme temperatures and harsh conditions, ensuring reliability in the field.

Another key characteristic is the advanced communication and navigation systems integrated into both vehicles. They come equipped with state-of-the-art GPS and real-time data transmission capabilities, allowing for seamless coordination with commanding units. Furthermore, enhanced battlefield awareness features, such as advanced sensor packages, provide operators with critical information about their surroundings, improving situational awareness and decision-making.

Protection is a fundamental aspect of the FIC M295 and M296. Both models include reinforced armor plating designed to withstand various ballistic threats. Additionally, they incorporate an advanced heat management system to minimize vulnerability to thermal detection by enemy forces. The vehicles also offer options for further armoring and countermeasure systems to enhance safety during operations.

The ergonomics of the cockpit and crew compartment have been meticulously designed to enhance operator comfort and efficiency. Controls are intuitive, and ample space is provided for gear and equipment, making the M295 and M296 not only practical but user-friendly.

In conclusion, the FIC M295 and M296 represent a significant advancement in military vehicle technology. Their combination of modularity, advanced propulsion systems, superior communication capabilities, and robust protection measures makes them an excellent choice for modern warfare scenarios. These vehicles embody the balance of strength, adaptability, and cutting-edge technology that contemporary military operations demand.