Fujitsu MHW2060AC, MHW2040AC manual Phases of operation, Ultra DMA data in commands

Models: MHW2060AC MHW2040AC

1 278
Download 278 pages 752 b
Page 214
Image 214

Interface

Both the host and device perform a CRC function during an Ultra DMA burst. At the end of an Ultra DMA burst the host sends the its CRC data to the device. The device compares its CRC data to the data sent from the host. If the two values do not match the device reports an error in the error register at the end of the command. If an error occurs during one or more Ultra DMA bursts for any one command, at the end of the command, the device shall report the first error that occurred.

5.5.2 Phases of operation

An Ultra DMA data transfer is accomplished through a series of Ultra DMA data in or data out bursts. Each Ultra DMA burst has three mandatory phases of operation: the initiation phase, the data transfer phase, and the Ultra DMA burst termination phase. In addition, an Ultra DMA burst may be paused during the data transfer phase (see 5.5.3 and 5.5.4 for the detailed protocol descriptions for each of these phases, 5.6 defines the specific timing requirements). In the following rules DMARDY- is used in cases that could apply to either DDMARDY- or HDMARDY-, and STROBE is used in cases that could apply to either DSTROBE or HSTROBE. The following are general Ultra DMA rules.

a)An Ultra DMA burst is defined as the period from an assertion of DMACK- by the host to the subsequent negation of DMACK-.

b)A recipient shall be prepared to receive at least two data words whenever it enters or resumes an Ultra DMA burst.

5.5.3 Ultra DMA data in commands

5.5.3.1 Initiating an Ultra DMA data in burst

The following steps shall occur in the order they are listed unless otherwise specifically allowed (see 5.6.3.1 and 5.6.3.2 for specific timing requirements):

1)The host shall keep DMACK- in the negated state before an Ultra DMA burst is initiated.

2)The device shall assert DMARQ to initiate an Ultra DMA burst. After assertion of DMARQ the device shall not negate DMARQ until after the first negation of DSTROBE.

3)Steps (3), (4) and (5) may occur in any order or at the same time. The host shall assert STOP.

4)The host shall negate HDMARDY-.

5)The host shall negate CS0-, CS1-, DA2, DA1, and DA0. The host shall keep CS0-, CS1-, DA2, DA1, and DA0 negated until after negating DMACK- at the end of the burst.

6)Steps (3), (4) and (5) shall have occurred at least tACK before the host asserts DMACK-. The host shall keep DMACK- asserted until the end of an Ultra DMA burst.

7)The host shall release DD (15:0) within tAZ after asserting DMACK-.

5-138

C141-E258

Page 214
Image 214
Fujitsu MHW2060AC, MHW2040AC manual Phases of operation, Ultra DMA data in commands, Initiating an Ultra DMA data in burst

MHW2060AC, MHW2040AC specifications

The Fujitsu MHW2040AC and MHW2060AC are notable hard disk drives (HDDs) that have been widely used in various computing applications, especially in laptops and compact devices. These models are part of Fujitsu's commitment to providing reliable storage solutions that meet the demands of modern computing.

The MHW2040AC offers a storage capacity of 40 GB, while the MHW2060AC provides a slightly larger capacity at 60 GB. This range of storage makes both models suitable for users looking for dependable space for documents, multimedia files, and software applications. Both drives utilize a 2.5-inch form factor, ideal for mobile computing, as they are lightweight and designed to fit into space-constrained environments.

In terms of performance, both drives operate at a spindle speed of 5400 RPM. This speed strikes a balance between power consumption and performance, making these drives an efficient choice for everyday tasks, such as web browsing and office applications. The drives are equipped with an interface of Ultra ATA/133, which enables faster data transfer rates compared to older models, thereby enhancing overall system responsiveness.

The MHW2040AC and MHW2060AC also incorporate several advanced technologies to bolster their performance and reliability. One such feature is the use of a fluid dynamic bearing (FDB) for the spindle motor, which minimizes noise and vibration, thus improving the overall user experience. Additionally, both drives come with error correction technology that helps maintain data integrity by detecting and correcting errors during read and write operations.

Moreover, these HDDs feature a shock sensor that can detect sudden movements, allowing the drive to park its heads to prevent data loss and hardware damage. This is particularly beneficial in mobile environments where the risks of impact are higher.

Both the MHW2040AC and MHW2060AC are designed with energy-saving features, making them an environmentally responsible choice for energy-conscious consumers. Their low power consumption not only contributes to a reduced carbon footprint but also extends battery life for portable devices.

In summary, the Fujitsu MHW2040AC and MHW2060AC are reliable, efficient, and user-friendly hard disk drives that combine moderate capacities with advanced features designed to enhance performance, ensure data integrity, and extend device longevity. These drives are well-suited for a range of applications, making them a solid choice for users seeking dependable storage solutions.