Legacy Mode and Native Mode IDE

The onboard EIDE controller may be configured as a either a Legacy or Native Mode IDE controller in the BIOS Setup. However, the operating system must support the selected mode for the device to operate correctly. The default configuration for the controller is Legacy Mode, as this is supported by most operating systems.

Legacy Mode

Legacy mode is the default configuration of the onboard EIDE controller. When in this mode, the controller will be fixed to use two interrupts: IRQs 14 and 15. Similarly, the I/O address of the controller will be fixed in the system. When in Legacy Mode, only a primary and secondary channel may be used in the system.

Native Mode

Native Mode allows more flexibility, as the system resources used by the IDE controller may be modified. When in Native Mode, the IDE controller only requires a single IRQ. Unlike Legacy Mode, this IRQ may be changed by the user or the operating system for better distribution of the system IRQs. When IRQs in the system are more evenly distributed, interrupt latency is minimized. The base address of the controller may also be modified.

Configuring the ATA/IDE Disk Chip Socket

The cpuModule was designed to be used in embedded computing applications. In such environments, rotating media like hard disks and floppy disks are not very desirable. It is possible to eliminate rotating storage devices by placing your operating system and application software into the cpuModule's ATA/IDE Disk Chip socket.

WARNING Before installing a device in the ATA/IDE Disk Chip socket, the system must be configured in the correct mode. For details on configuring the socket, refer to Chapter 4, Using the cpuModule

Before installing a device in the ATA/IDE Disk Chip socket, it is highly recommend to first configure the secondary IDE controller and device mode in the BIOS setup.

The secondary IDE controller must be enabled in the BIOS to allow read and write access to the device. When a device is installed in the socket, it will always appear as a master on the cpuModule’s secondary IDE controller.

From the BIOS setup screen, the user can also configure whether the socket contains a DMA mode or PIO mode device.

DMA Mode: DMA mode will reduce CPU overhead.

PIO Mode: When the socket is in PIO mode, PIO transfers are supported. PIO mode supports write protection.

68 CMX158886 cpuModule

BDM-610000049 Rev G

Page 78
Image 78
IBM BDM-610000049 user manual Legacy Mode and Native Mode IDE, Configuring the ATA/IDE Disk Chip Socket

BDM-610000049 specifications

The IBM BDM-610000049 is a powerful and versatile device designed for advanced data processing and analytics. This model is engineered to handle large volumes of data while ensuring high-speed performance and reliability. One of the main features of the BDM-610000049 is its robust processing capabilities, enabled by a state-of-the-art multi-core CPU architecture. This allows it to perform complex calculations and data manipulations efficiently, making it ideal for big data applications.

In terms of storage, the BDM-610000049 comes equipped with high-capacity SSD drives, which not only accelerate data access speeds but also enhance the overall system responsiveness. This feature is particularly beneficial for organizations that require rapid retrieval of stored information. The device also supports a variety of storage configurations, allowing users to tailor the system according to their specific needs, balancing between performance and capacity.

Networking technologies integrated into the BDM-610000049 are designed to facilitate seamless connectivity, ensuring quick and secure data transfers. Its advanced networking capabilities include support for multiple protocols, which streamline communication between different parts of the system and external devices. This is crucial for environments that rely on real-time data processing, such as financial services, healthcare, and logistics.

The IBM BDM-610000049 is also notable for its security features, which help protect sensitive data from unauthorized access and cyber threats. It incorporates state-of-the-art encryption protocols and secure access controls, providing an additional layer of safety for businesses handling critical information.

Moreover, the scalability of the BDM-610000049 is a key characteristic that sets it apart from competitors. Organizations can easily upgrade or expand their systems to accommodate growing data requirements without significant downtime or disruption. This flexibility is indispensable for businesses in today’s fast-paced digital landscape.

In summary, the IBM BDM-610000049 is a cutting-edge device that combines powerful processing, advanced storage technologies, robust networking capabilities, and enhanced security features. Its scalability ensures that it can grow with the demands of modern enterprises, making it a worthwhile investment for companies looking to harness the full power of their data. With the BDM-610000049, businesses can confidently pursue data-driven strategies, knowing they have a reliable and sophisticated technology solution at their disposal.