Telex 38109-977 Determining the Makeup of the Intercom Matrix, First Step--Determine the Size

Models: 38109-977

1 169
Download 169 pages 17.34 Kb
Page 138
Image 138

large design effortless. Apparent in our sample system is the ADAM here is a storehouse for 10 separate intercom systems! These internal intercom systems are configured to work separately or concurrently with each other. With the new automated server feature in AZ- Edit, files can be downloaded without human intervention by the powerful new UPL (User Programmable Language). This set of useful Boolean algebra expressions allows an almost endless chain of events to be introduced to the system to solve any problem. In short, the days of custom intercoms are over.

Determining the Makeup of the Intercom Matrix

First Step--Determine the Size

The matrix is composed of audio in/out ports (four-wire). These are further classified as panel ports (6 wire) and non-panel ports (four-wire). A non-panel port is simply a regular port without the data lines tied to the matrix leaving only the four-wire audio in and audio out. A typical broadcast intercom system consists of Users, IFB Circuits, Cameras, and Miscellaneous ports (to include static Party-Line systems, 2-way radios, telephones, etc.). The first step is to determine the size of the central matrix by counting everything that is attached it. We will use our large sample for this exercise.

Users

The users of the matrix are operators with keypanels. Going down the list of stations (derived from a source-destination table, block diagram, or position list), we count them one by one. In figure 5, we have 10 keypanels x 6 large control rooms plus 1 keypanel x 4 small control rooms. Thus, in this example, we have a total 64 users. The 64 users narrow our deciding matrix down to either an ADAM or ADAM-CS (barely) depending on subsequent port counts. A Zeus (24x24) would definitely be too small.

IFB Circuits

The next port count we need to add is the number of IFB circuits. All RTSmatrices have the unique ability to use a port delegated for IFB in a split fashion. What this means is a port counted for IFB automatically yields an input port for the program feed from the audio console. Therefore, program sources do not typically become a factor in the count unless there are more of them than IFB circuits. The situation is rare, though.

The IFB circuit, used in virtually all television facilities, is usually a one direction audio cue to on-air talent. The signal interrupts a predefined audio source, such as program audio, to inject a directive from the director, producer or audio. In its simplest form, IFB uses an earpiece, an external headphone box (to permit the talent to control the audio foldback level), a program source and a control station. A common IFB application is the live TV newscast where a director wishes to advise the talent a cut-in is starting.

Since all routing of the programs to IFBs is performed outside the matrix in our example, no large matrix assignment panel, such as the LCP102 (64x64 switcher) or PAP950-50 (50x50 switcher), is required. Unlike the PAP951 and PAP952, these panels sometimes find use in larger systems because of their ability to switch to any part of the matrix and thus, not fixed to any section.

With the influx of ENG vehicles, many of today’s IFB circuits are telephone dial-in. These particular circuits are sometimes left out of the count for various reasons. Including all IFB circuits not only insures correct matrix size, but also helps specify ancillary equipment such as the program assignment panel as described above.

124 H a n d b o o k o f I n t e r c o m S y s t e m s E n g i n e e r i n g

Page 138
Image 138
Telex 38109-977 manual Determining the Makeup of the Intercom Matrix, First Step--Determine the Size, Users, IFB Circuits