Intel IQ80960RM, RN manual Local Interrupts

Page 33

i960® RM/RN I/O Processor Overview

4.2Local Interrupts

The i960 RM/RN I/O processor is built around an 80960JT core, which has seven external interrupt lines designated XINT0# through XINT5# and NMI#. In the i960 RM/RN I/O processor, these interrupt lines are not directly connected to external interrupts, but pass through a layer of internal interrupt routing logic. Figure 4-3shows the interrupt connections on the i960 RM/RN I/O processor.

XINT0# through XINT3# on the 80960JT core can be used to receive PCI interrupts from the secondary PCI bus, or these interrupts can be passed through to the primary PCI interface, depending on the setting of the XINT Select bit of the PCI Interrupt Routing Select Register in the i960 RM/RN I/O processor. On the IQ80960RM/RN platform, XINT0# through XINT3# are configured to receive interrupts from the secondary PCI bus.

XINT4# and XINT5# on the i960 RM/RN I/O processor may be connected to interrupt sources external to the processor. On the IQ80960RM/RN platform, XINT4# is connected to the loss of fan detect and XINT5# is connected to the 16C550 UART.

XINT6#, XINT7# receive interrupts from internal sources. NMI# receives interrupts from internal sources and from an external source. Since all of these interrupts accept signals from multiple sources, a status register is provided for each of them to allow service routines to identify the source of the interrupt. Each of the possible interrupt sources is assigned a bit position in the status register. The interrupt sources for these lines are shown in Figure 4-3. On the IQ80960RM/RN platform, the NMI# interrupt is not connected to any external interrupt source and receives interrupts only from the internal devices on the i960 RM/RN I/O processor. Note that all error conditions result in an NMI# interrupt.

IQ80960RM/RN Evaluation Board Manual

4-3

Image 33
Contents Board Manual IQ80960RM/RN Evaluation PlatformIQ80960RM/RN Evaluation Platform Board Manual Contents 2.1 Tables FiguresPage Introduction IQ80960RM/IQ80960RN Platform Functional Block DiagramIQ80960RN Platform Physical Diagram Software Development Tools I960 RM/RN I/O Processor and IQ80960RM/RN FeaturesIxWorks* Real-Time Operating System Tornado* for I20* Software Development ToolsetTornado Build Tools Tornado Test and Debug ToolsCtools Software Development Toolset SPI610 Jtag Emulation SystemCtools and the MON960 Debug Monitor About This Manual Brief description of the contents of this manual followsTechnical Support Notational-ConventionsIntel Customer Electronic Mail Support Intel Customer Support ContactsCountry Literature Customer Support Number Document Information Related InformationCyclone Contacts Product Document Name Company/ Order #Page Software Installation Pre-Installation ConsiderationsInstalling Software Development Tools Getting StartedBattery Backup Hardware InstallationInstalling the IQ80960RM/RN Platforms in the Host System Verify IQ80960RM/RN Platform is FunctionalCreating and Downloading Executable Files Sample Download and Execution Using GDB960Page IQ80960RN Platform Power Requirements Power RequirementsIQ80960RM Platform Power Requirements Hardware ReferenceSdram Performance Sdram PerformanceTable Clocks Flash ROM Sdram ConfigurationsUpgrading Sdram Flash ROM ProgrammingPCI Slots Power Availability Secondary PCI Bus Expansion ConnectorsConsole Serial Port Uart Register AddressesLoss of Fan Detect Battery BackupInterrupt and Idsel Routing Secondary PCI Bus Interrupt and Idsel RoutingLogic Analyzer Headers Logic Analyzer Header DefinitionsJ12 J10 Jtag Header Switch S1 SettingsJtag Header Pinout PinUser LEDs During Initialization User LEDs10. Start-up LEDs MON960 LEDs Tests11. IQ80960RM/RN Connectors and LEDs Page I960 RM/RN I/O Processor Overview I960 RM/RN I/O Processor Block DiagramIQ80960RM/RN Platform Memory Map CPU Memory MapLocal Interrupts I960 RN/RM I/O Processor I960 RM/RN I/O Processor Interrupt Controller ConnectionsCPU Counter/Timers Primary PCI InterfaceSecondary PCI Interface Application Accelerator Unit DMA ChannelsApplication Accelerator Unit Performance Monitor UnitPage MON960 Support for IQ80960RM/RN MON960 Components1 MON960 Initialization 2 80960JT Core Initialization Memory Controller InitializationSdram Initialization Primary ATU Initialization Primary PCI Interface InitializationInitialization Modes Initialization Primary PCI Interface I960 Core SW1-1 SW1-2Secondary ATU Initialization PCI-to-PCI Bridge InitializationMON960 Kernel MON960 ExtensionsSecondary PCI Initialization SysPCIBIOSPresent PCI Bios RoutinesSysFindPCIDevice SysGenerateSpecialCycle SysReadConfigWord SysWriteConfigByte SysWriteConfigDword Additional MON960 Commands Diagnostics / Example CodeBoard Level Diagnostics Secondary PCI DiagnosticsBill of Materials Table A-1. IQ80960RN Bill of Materials Sheet 1Qty Location Part Description Manufacturer Table A-1. IQ80960RN Bill of Materials Sheet 2 Location Part Description Manufacturer Table A-1. IQ80960RN Bill of Materials Sheet 3CR8 Table A-1. IQ80960RN Bill of Materials Sheet 4Table A-2. IQ80960RM Bill of Materials Sheet 1 Table A-2. IQ80960RM Bill of Materials Sheet 2 Table A-2. IQ80960RM Bill of Materials Sheet 3 Table A-2. IQ80960RM Bill of Materials Sheet 4 Part Description Manufacturer Table A-2. IQ80960RM Bill of Materials Sheet 5Bill of Materials Schematics Table B-1. IQ80960RN Schematics ListSchematic Title IC Decoupling Connpcia REV Memory Controller Dclkin Dramclk LA Spares Dramclkla Mictor SDRAM-DIMM168P RST# Jtag Header Spci Conn Inta A6 RNC4R8P SAD48 SPAR64 SREQ4# Spares Table B-2. IQ80960RM Schematics List 80960RM REV Primary PCI Interface RCE1# RWE# Outb RAD16 TXD SBA0 DQ0 SCB0 SCE1# DQ2 SAD2 AD3S CONNPCI32 Trst A1 SINTD# B7 Intb Intc A7 SINTA# PALLV16V8-10JC Page Chip PALLV16V8Z-20JI PLD CodePage Recycling the Battery

RN, IQ80960RM specifications

The Intel IQ80960RM and RN are part of the Intel i960 family of microprocessors, which were specifically designed for embedded applications in real-time computing environments. Introduced in the early 1990s, these processors were aimed at providing high-performance processing capabilities in industrial, telecommunications, and military systems.

One of the key features of the IQ80960RM and RN is their ability to support a 32-bit architecture, delivering a significant performance advantage over 16-bit and earlier processors. This architecture enables the execution of complex algorithms and the management of large amounts of data, making these microprocessors suitable for demanding applications.

The i960 family is built around a superscalar architecture, allowing multiple instructions to be completed in a single clock cycle. This is achieved through advanced instruction pipelining, which significantly boosts throughput and overall computational speed. The IQ80960RM and RN also included features like branch prediction and out-of-order execution, enhancing efficiency and reducing latency in real-time applications.

Memory management capabilities are another strong point of the IQ80960RM and RN. They support both virtual and physical memory addressing, enabling sophisticated memory management strategies. Their integrated memory management unit (MMU) allows for easier and more effective memory allocation, critical for real-time operating systems that require precise timing and resource management.

Furthermore, these processors are designed with an extensive instruction set architecture (ISA), which supports a wide range of operations, including digital signal processing (DSP) tasks. This versatility allows them to be utilized in various applications, from automotive systems to robotics, where reliable performance is paramount.

The thermal performance and power efficiency of the IQ80960RM and RN has also been a notable characteristic. With operational capabilities across various temperature ranges, these chips are well-suited for harsh environments often found in industrial settings.

In terms of connectivity, the IQ80960 series supports multiple I/O interfaces and communication protocols, ensuring that they can integrate seamlessly with other components and systems. This flexibility enhances their usability in networked applications, particularly in embedded systems.

Overall, the Intel IQ80960RM and RN processors represent a significant step forward in embedded processor technology, characterized by their robust performance, advanced features, and ability to meet the stringent demands of real-time applications across various industries.