Emerson Series 610 manual Redundant Mode, Retransfer Inhibited

Page 25

Theory of Operation

6.Retransfer Inhibited

A retransfer from the bypass source to the UPS system shall be inhibited if any of the following conditions exist:

a.Manual (and Automatic) Retransfer Inhibitions:

1.UPS system-to-bypass voltage difference (ΔV) exceeds a predetermined percentage (normally 5%).

2.System circuit breaker (UPS output or SBB) is inoperative.

3.OK to Transfer signal from the control logic is not present.

4.Not enough UPS modules are ON LINE to supply the connected critical load.

b.Automatic Retransfer Inhibitions (in addition to those above):

1.The load transfer to bypass was not caused by a system overload.

2.Excessive cyclical overloads within a one-hour period.

3.Retransfer conditions are not satisfied within 5 minutes of the initial transfer.

2.2.6Redundant Mode

The typical multi-module UPS system is configured with a back-up (redundant) UPS module, con- nected in parallel to share the critical load with the other module(s). This parallel redundant system includes one more module than is required to supply the full critical load.

A parallel redundant system will always be in the Redundant Mode if all modules are ON LINE. In addition, if the critical load is reduced so that not all ON LINE modules are required, the UPS system can also operate in the Redundant Mode with one or more modules OFF LINE. The critical load will remain on the UPS system—even if one or more of the modules is taken OFF LINE for maintenance or because of an internal fault—as long as the remaining ON LINE modules can carry the full con- nected system load.

The system control logic monitors the connected critical load and the number of UPS modules ON LINE. If the UPS system is operating in the Redundant Mode, the REDUNDANT status message will be displayed at the System Control Cabinet (SCC). If the UPS system is operating in the Non-Redun- dant Mode (redundant module is OFF LINE or was not included in the system configuration), the NON-REDUNDANT status message is displayed at the SCC. In the Non-Redundant Mode, the criti- cal load will be transferred to bypass if any UPS module goes OFF LINE and the remaining ON LINE module(s) cannot carry the connected load without being overloaded.

The system control logic, located in the SCC, automatically adjusts the allowable overload limits based on the connected load and the number of modules ON LINE.

19

Image 25
Contents Liebert Series 610 UPS Battery Cabinet Precautions Table of Contents Specifications MaintenanceFigures Tables Important Safety Instructions Multi-Module UPS, 100-500kVA System DescriptionMulti-Module UPS, 500-750kVA Types of System Control Cabinets SCCs ReliabilityDesigned for Success Input Power Failure Safety PrecautionsModes of Operation Other Factors to ConsiderOperator Controls 1989-2003 Options BatteryModule Battery Disconnect Battery Racks or CabinetsThree Breaker Maintenance Bypass Two Breaker Maintenance BypassSystem Control Cabinet General Component DescriptionsUPS Module Battery PlantControls Hardware Detailed Component DescriptionsSoftware Rectifier/Charger Input Power FactorOperation Input Circuit BreakerBattery Disconnect Battery Charging CircuitBattery Charge Current Limiting Battery Equalize Charge CircuitUnbalanced Load Characteristics Non-Linear Load CharacteristicsInverter Output Regulation and Overload PerformanceFuse Protection Static BypassShorted SCR Monitoring Pulsed Parallel Operation Static Switch IsolationLoad Transfers Transfer and Retransfer Conditions Retransfer Inhibited Redundant ModeDisplay Screen and Operator Controls Features1000kVA 500kVADescription Function Operation Numbers are used as keys to data in , below Refer to 3.4.5 Shutdown ProceduresDescription Location Function Switches behind SCC control panel door Menu tree Menu Tree NavigationSCC Master Menu Master Menu ScreenModule Master Menu Operation Input Metering Displays SCC Monitor/Mimic Display ScreenOutput Metering Displays Item 7 Alarm Messages Status/Alarm Message AreasItem 5 Module Status Messages Item 6 System Status MessagesModule Monitor/Mimic display screen Module Monitor/Mimic Display ScreenItem 5 Alarm Messages Alarm MessagesModule Display SCC DisplayMonitor/Mimic display example Utility fail 2700kVAKVA//2170 KWkW 325A0A 325A0A 325A0A Upsinputpwr Battery MOD 1 OFF Line SUM ALM MVODLTS2 OFF540 Line SUM ALM Walk-in display screen during start-up Walk-In Display ScreenPresent Status Status Reports ScreensSCC Status Report Event HistoryModule Status Report History status report screens History StatusAlarm in SCC Alarm in Module Alarm conditions that freeze history data gatheringSystem Status Battery Cycle Monitor-Module OnlyBattery cycle monitoring summary screen SCC system configuration screen System Configuration ScreensDate screen DateTime screen TimeAuto Dial Auto dial setting screenMaximum Auto-Retransfer Attempts Modem Baud RateLanguage Selection System Current RatingSystem Options Retransfer AttemptsContinuous Duty Static Switch Optional Battery test screen-MMU onlySCC and module remote monitor indications Remote MonitorModule alarm limit settings screen Alarm Limit Settings ScreenTemperature Limit Setting Optional Battery Float VoltageRefer to 3.4.3 Load Transfer Procedures for more details Load Transfer Procedures ScreenRefer to 3.4.1 SCC Start-Up Procedure for more details Start-Up Procedures ScreenModule start- up procedures screens Shutdown Procedures ScreenSCC shutdown procedures screen Battery time screen 15 minute discharge Battery Time Screen Module OnlyElapsed Time Minutes Upper Limit Actual Lower LimitOperation Meter calibration screen Meter Calibration ScreenBattery equalize screen Battery Equalize ScreenSystem Status Messages Alarm and Status Messages Module Status MessagesLoad Block Messages Abbreviations used in alarm messagesAbbreviation Definition Alarm messages meaning and corrective action Static Switch Manual ResetBypass Phase Control PowerInverter Fault Reverse PowerTransfer Module N OffOvertemperature Battery OvertempTimeout New AlarmAlarm Message Alarm messages summarySpecial Functions Worldwide Reporting Communication InterfacesAuto-Dial Requesting InformationLocal Reporting to a Monitor Local Reporting to a TerminalSite Reporting SiteScan or Snmp Remote Monitor Panel Liebert Series 610 terminal commandsSeparate / Simultaneous Outputs Circuit breaker abbreviations Abbreviation Circuit Breaker OK to Transfer Load on BypassLoad on bypass, UPS available Momentary Overloads Momentary overload, pulsed static bypass switchInput power fail-load on battery Input Power Failure-Load on BatteryOne module off-line, load on UPS One Module Off-LineLoad on UPS-battery not available Off BatteryEmergency Modules Off Refer to 3.4.5 Shutdown ProceduresEmergency power off Remote Emergency Power OffSystem Shutdown Refer to 3.3.10 Maintenance BypassLoad on maintenance bypass, two breakers SCC Start-Up Procedure Manual ProceduresRefer to 3.5 Automatic Operations for more details Operation Operation SCC start-up procedures screen UPS Module Start-Up Module start-up procedures screen Operation Manual Transfer Instructions UPS Lead Load Transfer ProceduresIf the load is on Maintenance Bypass Maintenance Bypass Load TransfersIf the load is on the UPS System Bypass Shutdown Procedures System Shutdown Procedure Module Shutdown Procedure Automatic Operations Remote Emergency Power Off RepoLocal Emergency Modules Off Lemo Automatic Transfers to Bypass Overloads Without Transfer1000% 150%Automatic Module Off-Line Automatic Retransfers to UPSAutomatic Emergency Modules Off Maintenance Maintenance Agreements The Signature Program Liebert Global ServicesProfessional Start-Up TrainingRecord Log Routine MaintenanceAir Filters Limited Life Components Battery Safety Precautions Battery MaintenanceAvertissement Number of Cells Battery Voltage VDC Nominal Float Matching Battery Cabinets OptionalBattery voltage record Battery retorque valuesRack-Mounted Batteries Detection of Trouble Torque specifications unless otherwise labeledTorque Requirements Upstream Feeder Circuit Breaker Setting Inspections Reporting a ProblemCorrective Actions Recommended Test EquipmentRating Power factor pf KVAKVA Environmental Conditions Specifications applicable to environmentBattery Operation AdjustmentsElectrical Specifications Specifications 112 Page Locations
Related manuals
Manual 112 pages 3.63 Kb

Series 610 specifications

The Emerson Series 610 is a cutting-edge solution for precise process measurement and control, designed specifically for industries where accuracy and reliability are paramount. This advanced instrument, often utilized in oil and gas, chemical processing, and water treatment sectors, combines innovative technology with robust features to meet the demanding requirements of modern industrial applications.

One of the standout features of the Series 610 is its exceptional measurement accuracy. The device employs advanced sensor technology that enables precise determination of variables such as pressure, temperature, and flow. This accuracy translates into improved process efficiency and enhanced product quality. With a wide range of measurement capabilities, the Series 610 can handle varying process conditions and fluid types, making it versatile across different applications.

The heart of the Emerson Series 610 lies in its intelligent diagnostics and predictive maintenance functionalities. This built-in technology allows for real-time monitoring of the device's operational status, providing valuable insights into performance trends. By detecting anomalies early, users can take proactive measures to prevent potential failures, thereby reducing downtime and maintenance costs.

Moreover, the Series 610 is designed with user-friendly features. Its intuitive interface and easy-to-navigate menus facilitate quick setup and configuration, enabling operators to be productive from the outset. The device also supports various communication protocols, including HART and FOUNDATION fieldbus, ensuring seamless integration into existing control systems and enhancing overall automation capabilities.

Another notable characteristic of the Emerson Series 610 is its robust construction. Designed to withstand harsh environmental conditions, it is built with durable materials that offer high resistance to corrosion and physical damage. This durability ensures longevity and reliability, even in the most challenging industrial environments.

In summary, the Emerson Series 610 represents a significant advancement in process measurement technology. With its exceptional accuracy, intelligent diagnostics, user-friendly design, and robust construction, it is an ideal choice for industries seeking to enhance their operational efficiency and reliability. Its ability to seamlessly integrate into existing systems further solidifies its position as a leading solution in the field of industrial measurement and control. As industries continue to evolve, the Series 610 is poised to meet the challenges of the future with confidence and precision.