Emerson Series 610 manual Battery MOD 1 OFF Line SUM ALM MVODLTS2 OFF540 Line SUM ALM

Page 42

Operation

Figure 20 Monitor/Mimic Display example: Load on bypass, all UPS modules off line

BYPASS INPUT

© 1989-2003

 

 

 

 

 

A-B B-C C-A

 

 

 

 

480V

480V

480V

 

 

 

 

 

60.0 Hz

 

 

 

 

 

 

 

 

UPS RATINGS

UPSINPUTPWR

 

 

AP658-71

 

SCCB 1600

A-B

B-C

C-A

 

RATED 500 KVA

A-B

B-C

C-A

 

OUTPUT VOLTAGE

380V

380V

380V

 

 

 

 

480V

480V

480V

 

A-B

B-C

C-A

75A

75A

75A

 

 

380V

380V

380V

 

 

 

 

 

 

 

 

 

50.0

 

 

 

 

 

 

0 Hz

 

BATTERY

 

MOD 1 OFF LINE SUM ALM

 

MVODLTS2 OFF540 LINE SUM ALM

 

MODAMPS3 75OFFCHARGLINE SUM ALM

Not OK to Transfer

 

Static Switch Connected

LOAD

6270KVA//502KW

A B C 755A0A 755A0A 755A0A

0 OF 3 MODULES

CONNECTED

NON-REDUNDANT

Load on Bypass

Static Sw Unable

Module Sum Alm

SCC Display

BYPASS INPUT A-B B-C C-A 380V 380V 380V 50.0 Hz

UPSINPUTPWR

AA--BB BB--CC CC--AA

380V4 4380V 380V4

4575A 455A7 455A7

0A 0A 0A

MODULE DC BUS

BATTERY

MOD 1 OFFNLINE SUM ALM VOLTS 0 MVODLTS2 OFF540 LINE SUM ALM AMPS 0

MODAMPS3 1575OFFNCHARGLINE SUM ALM

© 1989-2003

UPSRATIINGS

SCCTAP658461600--8471 1600

RATED 500375 KVA

OUTPUT VOLTAGE

A-B B-C C-A

380V 380V0V 380V

50.0HzHz

50..00Hz

380V

NotOK toOKTransferto Transfer Static Switch Connected

LOAD

6273140KVA/627 KVA/25102KW

A B C

9534770AA 9534770AA 953A477A0A

02 OF 3 MODULES

CONNECTED

NON-REDUNDANT

ModuleInputLoad OnFailSumBypassAlm

StBatticCBSwOpenUnable

Module Sum Alm

Module Display

36

Image 42
Contents Liebert Series 610 UPS Battery Cabinet Precautions Table of Contents Maintenance SpecificationsFigures Tables Important Safety Instructions System Description Multi-Module UPS, 100-500kVAMulti-Module UPS, 500-750kVA Reliability Types of System Control Cabinets SCCsDesigned for Success Modes of Operation Safety PrecautionsInput Power Failure Other Factors to ConsiderOperator Controls 1989-2003 Battery OptionsThree Breaker Maintenance Bypass Battery Racks or CabinetsModule Battery Disconnect Two Breaker Maintenance BypassGeneral Component Descriptions System Control CabinetBattery Plant UPS ModuleDetailed Component Descriptions Controls HardwareSoftware Operation Input Power FactorRectifier/Charger Input Circuit BreakerBattery Charge Current Limiting Battery Charging CircuitBattery Disconnect Battery Equalize Charge CircuitInverter Non-Linear Load CharacteristicsUnbalanced Load Characteristics Output Regulation and Overload PerformanceStatic Bypass Fuse ProtectionShorted SCR Monitoring Static Switch Isolation Pulsed Parallel OperationLoad Transfers Transfer and Retransfer Conditions Redundant Mode Retransfer InhibitedFeatures Display Screen and Operator Controls500kVA 1000kVADescription Function Operation Refer to 3.4.5 Shutdown Procedures Numbers are used as keys to data in , belowDescription Location Function Switches behind SCC control panel door Menu Tree Navigation Menu treeMaster Menu Screen SCC Master MenuModule Master Menu Operation SCC Monitor/Mimic Display Screen Input Metering DisplaysOutput Metering Displays Item 5 Module Status Messages Status/Alarm Message AreasItem 7 Alarm Messages Item 6 System Status MessagesModule Monitor/Mimic Display Screen Module Monitor/Mimic display screenAlarm Messages Item 5 Alarm MessagesSCC Display Module DisplayMonitor/Mimic display example Utility fail 2700kVAKVA//2170 KWkW 325A0A 325A0A 325A0A Upsinputpwr Battery MOD 1 OFF Line SUM ALM MVODLTS2 OFF540 Line SUM ALM Walk-In Display Screen Walk-in display screen during start-upStatus Reports Screens Present StatusEvent History SCC Status ReportModule Status Report History Status History status report screensAlarm conditions that freeze history data gathering Alarm in SCC Alarm in ModuleBattery Cycle Monitor-Module Only System StatusBattery cycle monitoring summary screen System Configuration Screens SCC system configuration screenDate Date screenTime Time screenAuto dial setting screen Auto DialModem Baud Rate Maximum Auto-Retransfer AttemptsSystem Options System Current RatingLanguage Selection Retransfer AttemptsBattery test screen-MMU only Continuous Duty Static Switch OptionalRemote Monitor SCC and module remote monitor indicationsAlarm Limit Settings Screen Module alarm limit settings screenBattery Float Voltage Temperature Limit Setting OptionalLoad Transfer Procedures Screen Refer to 3.4.3 Load Transfer Procedures for more detailsStart-Up Procedures Screen Refer to 3.4.1 SCC Start-Up Procedure for more detailsShutdown Procedures Screen Module start- up procedures screensSCC shutdown procedures screen Battery Time Screen Module Only Battery time screen 15 minute dischargeUpper Limit Actual Lower Limit Elapsed Time MinutesOperation Meter Calibration Screen Meter calibration screenBattery Equalize Screen Battery equalize screenAlarm and Status Messages Module Status Messages System Status MessagesAbbreviations used in alarm messages Load Block MessagesAbbreviation Definition Alarm messages meaning and corrective action Bypass Phase Manual ResetStatic Switch Control PowerTransfer Reverse PowerInverter Fault Module N OffTimeout Battery OvertempOvertemperature New AlarmAlarm messages summary Alarm MessageSpecial Functions Auto-Dial Communication InterfacesWorldwide Reporting Requesting InformationLocal Reporting to a Terminal Local Reporting to a MonitorSite Reporting SiteScan or Snmp Liebert Series 610 terminal commands Remote Monitor PanelSeparate / Simultaneous Outputs Circuit breaker abbreviations Abbreviation Circuit Breaker Load on Bypass OK to TransferLoad on bypass, UPS available Momentary overload, pulsed static bypass switch Momentary OverloadsInput Power Failure-Load on Battery Input power fail-load on batteryOne Module Off-Line One module off-line, load on UPSOff Battery Load on UPS-battery not availableRefer to 3.4.5 Shutdown Procedures Emergency Modules OffRemote Emergency Power Off Emergency power offRefer to 3.3.10 Maintenance Bypass System ShutdownLoad on maintenance bypass, two breakers Manual Procedures SCC Start-Up ProcedureRefer to 3.5 Automatic Operations for more details Operation Operation SCC start-up procedures screen UPS Module Start-Up Module start-up procedures screen Operation Load Transfer Procedures Manual Transfer Instructions UPS LeadMaintenance Bypass Load Transfers If the load is on Maintenance BypassIf the load is on the UPS System Bypass Shutdown Procedures System Shutdown Procedure Module Shutdown Procedure Remote Emergency Power Off Repo Automatic OperationsLocal Emergency Modules Off Lemo 1000% Overloads Without TransferAutomatic Transfers to Bypass 150%Automatic Retransfers to UPS Automatic Module Off-LineAutomatic Emergency Modules Off Maintenance Professional Start-Up Liebert Global ServicesMaintenance Agreements The Signature Program TrainingRoutine Maintenance Record LogAir Filters Limited Life Components Battery Maintenance Battery Safety PrecautionsAvertissement Matching Battery Cabinets Optional Number of Cells Battery Voltage VDC Nominal FloatBattery retorque values Battery voltage recordRack-Mounted Batteries Torque specifications unless otherwise labeled Detection of TroubleTorque Requirements Corrective Actions Reporting a ProblemUpstream Feeder Circuit Breaker Setting Inspections Recommended Test EquipmentPower factor pf KVA RatingKVA Specifications applicable to environment Environmental ConditionsAdjustments Battery OperationElectrical Specifications Specifications 112 Page Locations
Related manuals
Manual 112 pages 3.63 Kb

Series 610 specifications

The Emerson Series 610 is a cutting-edge solution for precise process measurement and control, designed specifically for industries where accuracy and reliability are paramount. This advanced instrument, often utilized in oil and gas, chemical processing, and water treatment sectors, combines innovative technology with robust features to meet the demanding requirements of modern industrial applications.

One of the standout features of the Series 610 is its exceptional measurement accuracy. The device employs advanced sensor technology that enables precise determination of variables such as pressure, temperature, and flow. This accuracy translates into improved process efficiency and enhanced product quality. With a wide range of measurement capabilities, the Series 610 can handle varying process conditions and fluid types, making it versatile across different applications.

The heart of the Emerson Series 610 lies in its intelligent diagnostics and predictive maintenance functionalities. This built-in technology allows for real-time monitoring of the device's operational status, providing valuable insights into performance trends. By detecting anomalies early, users can take proactive measures to prevent potential failures, thereby reducing downtime and maintenance costs.

Moreover, the Series 610 is designed with user-friendly features. Its intuitive interface and easy-to-navigate menus facilitate quick setup and configuration, enabling operators to be productive from the outset. The device also supports various communication protocols, including HART and FOUNDATION fieldbus, ensuring seamless integration into existing control systems and enhancing overall automation capabilities.

Another notable characteristic of the Emerson Series 610 is its robust construction. Designed to withstand harsh environmental conditions, it is built with durable materials that offer high resistance to corrosion and physical damage. This durability ensures longevity and reliability, even in the most challenging industrial environments.

In summary, the Emerson Series 610 represents a significant advancement in process measurement technology. With its exceptional accuracy, intelligent diagnostics, user-friendly design, and robust construction, it is an ideal choice for industries seeking to enhance their operational efficiency and reliability. Its ability to seamlessly integrate into existing systems further solidifies its position as a leading solution in the field of industrial measurement and control. As industries continue to evolve, the Series 610 is poised to meet the challenges of the future with confidence and precision.