Emerson Series 610 manual Operation

Page 66

Operation

The Liebert Series 610 dynamically adjusts the Battery Shutdown voltage based on battery charac- teristics and the length of the current discharge event. If a discharge event extends past 15 minutes (i.e., the load is less than the full design rating), the Battery Shutdown voltage setting is gradually and automatically increased, to protect the batteries from deep discharge.

When the battery voltage decreases to a preset limit (see 3.2.7 - Alarm Limit Settings Screen), the Low Battery Warning alarm message appears on the display screen. This warns the operator that the battery voltage is approaching the Battery Shutdown level—about five minutes of time remaining at full rated load.

NOTE

The Low Battery alarm setting is designed to be useful at full load battery discharge rates. Unlike the Battery Shutdown voltage, the Low Battery alarm setting is not automatically increased and should not be relied upon as an indicator of battery time remaining. Instead, the operator should consult the Battery Time screen or Present Status screen to see the Calculated Time Remaining based on actual usage during the discharge period.

If the battery discharges to the Battery Shutdown level, represented by the lower line on the Battery Time screen, the battery and input circuit breakers trip open and the UPS module is shut down. This protects the battery from being damaged by an extended deep discharge.

! CAUTION

When battery shutdown occurs, no power will be supplied to the critical load unless power is available through the bypass line from the utility source (or from an engine generator set). If you anticipate a battery shutdown (and an engine generator set is not available), either transfer the load to bypass (if available) or perform a controlled shutdown of the critical load.

If the Battery Time screen is displayed while the battery is not discharging, it will display the present Battery Charge percentage and the results of the previous discharge event.

NOTE

1. During initial UPS start-up, the Battery Charge will display 100%, even though actual state of charge may be slightly less. It will normally take three to four days of operation to completely charge the battery. After the battery is fully charged the first time, Battery Charge will be an accurate indication of battery status.

2.If Calculated Time Remaining is less than Rated Time Remaining, a battery problem may be indicated. Battery maintenance personnel should thoroughly examine the battery plant for factors that may reduce battery performance, such as:

Battery age

Excessive battery discharge/recharge cycles

Bad or weak cells

Low acid levels in flooded cells

Loose electrical connections

Ambient temperature extremes

Dirty battery jar covers

3.If the battery plant has been thoroughly examined for proper maintenance and condition and the Calculated value is still less than 80% of Rated value, contact Liebert Global Services.

The Liebert Series 610 records information about each discharge event. This data can be reviewed on the Battery Cycle Monitor screen, as described in 3.2.5 - Status Reports Screens.

60

Image 66
Contents Liebert Series 610 UPS Battery Cabinet Precautions Table of Contents Maintenance SpecificationsFigures Tables Important Safety Instructions System Description Multi-Module UPS, 100-500kVAMulti-Module UPS, 500-750kVA Reliability Types of System Control Cabinets SCCsDesigned for Success Modes of Operation Safety PrecautionsInput Power Failure Other Factors to ConsiderOperator Controls 1989-2003 Battery OptionsThree Breaker Maintenance Bypass Battery Racks or CabinetsModule Battery Disconnect Two Breaker Maintenance BypassGeneral Component Descriptions System Control CabinetBattery Plant UPS ModuleDetailed Component Descriptions Controls HardwareSoftware Operation Input Power FactorRectifier/Charger Input Circuit BreakerBattery Charge Current Limiting Battery Charging CircuitBattery Disconnect Battery Equalize Charge CircuitInverter Non-Linear Load CharacteristicsUnbalanced Load Characteristics Output Regulation and Overload PerformanceStatic Bypass Fuse ProtectionShorted SCR Monitoring Static Switch Isolation Pulsed Parallel OperationLoad Transfers Transfer and Retransfer Conditions Redundant Mode Retransfer InhibitedFeatures Display Screen and Operator Controls500kVA 1000kVADescription Function Operation Refer to 3.4.5 Shutdown Procedures Numbers are used as keys to data in , belowDescription Location Function Switches behind SCC control panel door Menu Tree Navigation Menu treeMaster Menu Screen SCC Master MenuModule Master Menu Operation SCC Monitor/Mimic Display Screen Input Metering DisplaysOutput Metering Displays Item 5 Module Status Messages Status/Alarm Message AreasItem 7 Alarm Messages Item 6 System Status MessagesModule Monitor/Mimic Display Screen Module Monitor/Mimic display screenAlarm Messages Item 5 Alarm MessagesSCC Display Module DisplayMonitor/Mimic display example Utility fail 2700kVAKVA//2170 KWkW 325A0A 325A0A 325A0A Upsinputpwr Battery MOD 1 OFF Line SUM ALM MVODLTS2 OFF540 Line SUM ALM Walk-In Display Screen Walk-in display screen during start-upStatus Reports Screens Present StatusEvent History SCC Status ReportModule Status Report History Status History status report screensAlarm conditions that freeze history data gathering Alarm in SCC Alarm in ModuleBattery Cycle Monitor-Module Only System StatusBattery cycle monitoring summary screen System Configuration Screens SCC system configuration screenDate Date screenTime Time screenAuto dial setting screen Auto DialModem Baud Rate Maximum Auto-Retransfer AttemptsSystem Options System Current RatingLanguage Selection Retransfer AttemptsBattery test screen-MMU only Continuous Duty Static Switch OptionalRemote Monitor SCC and module remote monitor indicationsAlarm Limit Settings Screen Module alarm limit settings screenBattery Float Voltage Temperature Limit Setting OptionalLoad Transfer Procedures Screen Refer to 3.4.3 Load Transfer Procedures for more detailsStart-Up Procedures Screen Refer to 3.4.1 SCC Start-Up Procedure for more detailsShutdown Procedures Screen Module start- up procedures screensSCC shutdown procedures screen Battery Time Screen Module Only Battery time screen 15 minute dischargeUpper Limit Actual Lower Limit Elapsed Time MinutesOperation Meter Calibration Screen Meter calibration screenBattery Equalize Screen Battery equalize screenAlarm and Status Messages Module Status Messages System Status MessagesAbbreviations used in alarm messages Load Block MessagesAbbreviation Definition Alarm messages meaning and corrective action Bypass Phase Manual ResetStatic Switch Control PowerTransfer Reverse PowerInverter Fault Module N OffTimeout Battery OvertempOvertemperature New AlarmAlarm messages summary Alarm MessageSpecial Functions Auto-Dial Communication InterfacesWorldwide Reporting Requesting InformationLocal Reporting to a Terminal Local Reporting to a MonitorSite Reporting SiteScan or Snmp Liebert Series 610 terminal commands Remote Monitor PanelSeparate / Simultaneous Outputs Circuit breaker abbreviations Abbreviation Circuit Breaker Load on Bypass OK to TransferLoad on bypass, UPS available Momentary overload, pulsed static bypass switch Momentary OverloadsInput Power Failure-Load on Battery Input power fail-load on batteryOne Module Off-Line One module off-line, load on UPSOff Battery Load on UPS-battery not availableRefer to 3.4.5 Shutdown Procedures Emergency Modules OffRemote Emergency Power Off Emergency power offRefer to 3.3.10 Maintenance Bypass System ShutdownLoad on maintenance bypass, two breakers Manual Procedures SCC Start-Up ProcedureRefer to 3.5 Automatic Operations for more details Operation Operation SCC start-up procedures screen UPS Module Start-Up Module start-up procedures screen Operation Load Transfer Procedures Manual Transfer Instructions UPS LeadMaintenance Bypass Load Transfers If the load is on Maintenance BypassIf the load is on the UPS System Bypass Shutdown Procedures System Shutdown Procedure Module Shutdown Procedure Remote Emergency Power Off Repo Automatic OperationsLocal Emergency Modules Off Lemo 1000% Overloads Without TransferAutomatic Transfers to Bypass 150%Automatic Retransfers to UPS Automatic Module Off-LineAutomatic Emergency Modules Off Maintenance Professional Start-Up Liebert Global ServicesMaintenance Agreements The Signature Program TrainingRoutine Maintenance Record LogAir Filters Limited Life Components Battery Maintenance Battery Safety PrecautionsAvertissement Matching Battery Cabinets Optional Number of Cells Battery Voltage VDC Nominal FloatBattery retorque values Battery voltage recordRack-Mounted Batteries Torque specifications unless otherwise labeled Detection of TroubleTorque Requirements Corrective Actions Reporting a ProblemUpstream Feeder Circuit Breaker Setting Inspections Recommended Test EquipmentPower factor pf KVA RatingKVA Specifications applicable to environment Environmental ConditionsAdjustments Battery OperationElectrical Specifications Specifications 112 Page Locations
Related manuals
Manual 112 pages 3.63 Kb

Series 610 specifications

The Emerson Series 610 is a cutting-edge solution for precise process measurement and control, designed specifically for industries where accuracy and reliability are paramount. This advanced instrument, often utilized in oil and gas, chemical processing, and water treatment sectors, combines innovative technology with robust features to meet the demanding requirements of modern industrial applications.

One of the standout features of the Series 610 is its exceptional measurement accuracy. The device employs advanced sensor technology that enables precise determination of variables such as pressure, temperature, and flow. This accuracy translates into improved process efficiency and enhanced product quality. With a wide range of measurement capabilities, the Series 610 can handle varying process conditions and fluid types, making it versatile across different applications.

The heart of the Emerson Series 610 lies in its intelligent diagnostics and predictive maintenance functionalities. This built-in technology allows for real-time monitoring of the device's operational status, providing valuable insights into performance trends. By detecting anomalies early, users can take proactive measures to prevent potential failures, thereby reducing downtime and maintenance costs.

Moreover, the Series 610 is designed with user-friendly features. Its intuitive interface and easy-to-navigate menus facilitate quick setup and configuration, enabling operators to be productive from the outset. The device also supports various communication protocols, including HART and FOUNDATION fieldbus, ensuring seamless integration into existing control systems and enhancing overall automation capabilities.

Another notable characteristic of the Emerson Series 610 is its robust construction. Designed to withstand harsh environmental conditions, it is built with durable materials that offer high resistance to corrosion and physical damage. This durability ensures longevity and reliability, even in the most challenging industrial environments.

In summary, the Emerson Series 610 represents a significant advancement in process measurement technology. With its exceptional accuracy, intelligent diagnostics, user-friendly design, and robust construction, it is an ideal choice for industries seeking to enhance their operational efficiency and reliability. Its ability to seamlessly integrate into existing systems further solidifies its position as a leading solution in the field of industrial measurement and control. As industries continue to evolve, the Series 610 is poised to meet the challenges of the future with confidence and precision.