Emerson Series 610 manual Operation

Page 28

Operation

Figure 9 Operator controls, typical SCCT System Control Cabinet

Table 2

Typical SCCT System Control Cabinet operator controls

 

 

 

 

Item

 

Description

Function

 

 

 

 

1

 

UPS Output Circuit

This motorized circuit breaker connects the critical load to the UPS system

 

Breaker

output.

 

 

2

 

System Bypass Circuit

This motorized circuit breaker connects the critical load to the bypass line.

 

Breaker

 

 

 

3

 

Operator Control Panel

Refer to Figure 10 for controls available on this panel.

 

 

 

 

4

 

Interlock Button

Refer to Figure 11.

 

(on rear of Control Panel)

 

 

 

5

 

Close Bypass Switch

Refer to Figure 11.

 

(behind door)

 

 

 

6

 

Bypass Reset Switch

Refer to Figure 11.

 

(behind door)

 

 

 

 

 

 

These manually operated switches disconnect the static switch from the

 

 

 

bypass line and from the critical load. They are normally ON (closed). Turn

 

 

Static Switch Disconnects

them OFF (open) only to isolate (disconnect) the static switch for

7

 

maintenance procedures. For SCCT less than 1600A, the static switch

 

(behind door)

 

 

disconnects are contactors that open automatically upon loss of bypass input

 

 

 

 

 

 

power and close automatically when bypass power is restored. Control power

 

 

 

fuse disconnects are used to manually open the contactors for maintenance.

 

 

 

Press these two switches before closing Static Switch Disconnects when

 

 

Reset Switches (SW1) for

recovering from a shutdown that includes loss of Control Power. Green LED

8

 

Static Switch Disconnects

on means Control Power is available. Red LED on means Reset Switch

 

 

(behind door)

needs to be pushed. Only SCCI and SCCC control cabinets and SCCT

 

 

 

1600A and larger.

9

 

Control Power Disconnect

Normally ON. Fuseblocks that are labeled F7 through F10. Turn OFF Control

 

(behind door)

Power only when required for maintenance procedures.

 

 

22

Image 28
Contents Liebert Series 610 UPS Battery Cabinet Precautions Table of Contents Maintenance SpecificationsFigures Tables Important Safety Instructions System Description Multi-Module UPS, 100-500kVAMulti-Module UPS, 500-750kVA Types of System Control Cabinets SCCs ReliabilityDesigned for Success Safety Precautions Input Power FailureModes of Operation Other Factors to ConsiderOperator Controls 1989-2003 Battery OptionsBattery Racks or Cabinets Module Battery DisconnectThree Breaker Maintenance Bypass Two Breaker Maintenance BypassGeneral Component Descriptions System Control CabinetBattery Plant UPS ModuleControls Hardware Detailed Component DescriptionsSoftware Input Power Factor Rectifier/ChargerOperation Input Circuit BreakerBattery Charging Circuit Battery DisconnectBattery Charge Current Limiting Battery Equalize Charge CircuitNon-Linear Load Characteristics Unbalanced Load CharacteristicsInverter Output Regulation and Overload PerformanceFuse Protection Static BypassShorted SCR Monitoring Pulsed Parallel Operation Static Switch IsolationLoad Transfers Transfer and Retransfer Conditions Redundant Mode Retransfer InhibitedFeatures Display Screen and Operator Controls1000kVA 500kVADescription Function Operation Numbers are used as keys to data in , below Refer to 3.4.5 Shutdown ProceduresDescription Location Function Switches behind SCC control panel door Menu Tree Navigation Menu treeSCC Master Menu Master Menu ScreenModule Master Menu Operation Input Metering Displays SCC Monitor/Mimic Display ScreenOutput Metering Displays Status/Alarm Message Areas Item 7 Alarm MessagesItem 5 Module Status Messages Item 6 System Status MessagesModule Monitor/Mimic Display Screen Module Monitor/Mimic display screenAlarm Messages Item 5 Alarm MessagesSCC Display Module DisplayMonitor/Mimic display example Utility fail 2700kVAKVA//2170 KWkW 325A0A 325A0A 325A0A Upsinputpwr Battery MOD 1 OFF Line SUM ALM MVODLTS2 OFF540 Line SUM ALM Walk-In Display Screen Walk-in display screen during start-upStatus Reports Screens Present StatusSCC Status Report Event HistoryModule Status Report History Status History status report screensAlarm conditions that freeze history data gathering Alarm in SCC Alarm in ModuleBattery Cycle Monitor-Module Only System StatusBattery cycle monitoring summary screen System Configuration Screens SCC system configuration screenDate Date screenTime Time screenAuto dial setting screen Auto DialModem Baud Rate Maximum Auto-Retransfer AttemptsSystem Current Rating Language SelectionSystem Options Retransfer AttemptsBattery test screen-MMU only Continuous Duty Static Switch OptionalRemote Monitor SCC and module remote monitor indicationsAlarm Limit Settings Screen Module alarm limit settings screenBattery Float Voltage Temperature Limit Setting OptionalLoad Transfer Procedures Screen Refer to 3.4.3 Load Transfer Procedures for more detailsStart-Up Procedures Screen Refer to 3.4.1 SCC Start-Up Procedure for more detailsShutdown Procedures Screen Module start- up procedures screensSCC shutdown procedures screen Battery Time Screen Module Only Battery time screen 15 minute dischargeUpper Limit Actual Lower Limit Elapsed Time MinutesOperation Meter Calibration Screen Meter calibration screenBattery Equalize Screen Battery equalize screenAlarm and Status Messages Module Status Messages System Status MessagesLoad Block Messages Abbreviations used in alarm messagesAbbreviation Definition Alarm messages meaning and corrective action Manual Reset Static SwitchBypass Phase Control PowerReverse Power Inverter FaultTransfer Module N OffBattery Overtemp OvertemperatureTimeout New AlarmAlarm Message Alarm messages summarySpecial Functions Communication Interfaces Worldwide ReportingAuto-Dial Requesting InformationLocal Reporting to a Monitor Local Reporting to a TerminalSite Reporting SiteScan or Snmp Remote Monitor Panel Liebert Series 610 terminal commandsSeparate / Simultaneous Outputs Circuit breaker abbreviations Abbreviation Circuit Breaker Load on Bypass OK to TransferLoad on bypass, UPS available Momentary overload, pulsed static bypass switch Momentary OverloadsInput Power Failure-Load on Battery Input power fail-load on batteryOne Module Off-Line One module off-line, load on UPSOff Battery Load on UPS-battery not availableRefer to 3.4.5 Shutdown Procedures Emergency Modules OffRemote Emergency Power Off Emergency power offRefer to 3.3.10 Maintenance Bypass System ShutdownLoad on maintenance bypass, two breakers SCC Start-Up Procedure Manual ProceduresRefer to 3.5 Automatic Operations for more details Operation Operation SCC start-up procedures screen UPS Module Start-Up Module start-up procedures screen Operation Load Transfer Procedures Manual Transfer Instructions UPS LeadIf the load is on Maintenance Bypass Maintenance Bypass Load TransfersIf the load is on the UPS System Bypass Shutdown Procedures System Shutdown Procedure Module Shutdown Procedure Automatic Operations Remote Emergency Power Off RepoLocal Emergency Modules Off Lemo Overloads Without Transfer Automatic Transfers to Bypass1000% 150%Automatic Module Off-Line Automatic Retransfers to UPSAutomatic Emergency Modules Off Maintenance Liebert Global Services Maintenance Agreements The Signature ProgramProfessional Start-Up TrainingRecord Log Routine MaintenanceAir Filters Limited Life Components Battery Maintenance Battery Safety PrecautionsAvertissement Matching Battery Cabinets Optional Number of Cells Battery Voltage VDC Nominal FloatBattery voltage record Battery retorque valuesRack-Mounted Batteries Detection of Trouble Torque specifications unless otherwise labeledTorque Requirements Reporting a Problem Upstream Feeder Circuit Breaker Setting InspectionsCorrective Actions Recommended Test EquipmentRating Power factor pf KVAKVA Specifications applicable to environment Environmental ConditionsAdjustments Battery OperationElectrical Specifications Specifications 112 Page Locations
Related manuals
Manual 112 pages 3.63 Kb

Series 610 specifications

The Emerson Series 610 is a cutting-edge solution for precise process measurement and control, designed specifically for industries where accuracy and reliability are paramount. This advanced instrument, often utilized in oil and gas, chemical processing, and water treatment sectors, combines innovative technology with robust features to meet the demanding requirements of modern industrial applications.

One of the standout features of the Series 610 is its exceptional measurement accuracy. The device employs advanced sensor technology that enables precise determination of variables such as pressure, temperature, and flow. This accuracy translates into improved process efficiency and enhanced product quality. With a wide range of measurement capabilities, the Series 610 can handle varying process conditions and fluid types, making it versatile across different applications.

The heart of the Emerson Series 610 lies in its intelligent diagnostics and predictive maintenance functionalities. This built-in technology allows for real-time monitoring of the device's operational status, providing valuable insights into performance trends. By detecting anomalies early, users can take proactive measures to prevent potential failures, thereby reducing downtime and maintenance costs.

Moreover, the Series 610 is designed with user-friendly features. Its intuitive interface and easy-to-navigate menus facilitate quick setup and configuration, enabling operators to be productive from the outset. The device also supports various communication protocols, including HART and FOUNDATION fieldbus, ensuring seamless integration into existing control systems and enhancing overall automation capabilities.

Another notable characteristic of the Emerson Series 610 is its robust construction. Designed to withstand harsh environmental conditions, it is built with durable materials that offer high resistance to corrosion and physical damage. This durability ensures longevity and reliability, even in the most challenging industrial environments.

In summary, the Emerson Series 610 represents a significant advancement in process measurement technology. With its exceptional accuracy, intelligent diagnostics, user-friendly design, and robust construction, it is an ideal choice for industries seeking to enhance their operational efficiency and reliability. Its ability to seamlessly integrate into existing systems further solidifies its position as a leading solution in the field of industrial measurement and control. As industries continue to evolve, the Series 610 is poised to meet the challenges of the future with confidence and precision.