Emerson Series 610 manual Local Reporting to a Terminal, Local Reporting to a Monitor

Page 77

Operation

For example, to see a copy of information on the Present Status Report screen from the SCC (see Present Status in this manual), press the “A” key (either uppercase or lowercase can be used for all except the date and time commands) and then the Enter key. The Liebert Series 610 will send the data, which will be displayed on your screen. To see the Present Status Report screen from, say, Mod- ule 1, type A1 and press the Enter key. Please note that the data on the screen is like a snapshot—the status of the UPS at the moment you requested the information. The information sent remotely is not updated, although you can repeat the process at intervals to request the present information.

Some screens, like the Battery Cycle Monitor information, contain data that you may wish to import into a spreadsheet for further calculations. To put this data into a usable format, use the screen-cap- ture feature of your communications software (or a separate screen-capture program) to save all or part of the data to disk.

NOTE

If you save the file with an extension of “.txt,” it can then be imported into a spreadsheet program and converted to worksheet format.

To terminate your connection to the Liebert Series 610, press the “H” key and then the Enter key. The UPS will hang up its modem and await your next call.

Local Reporting to a Terminal

The Liebert Series 610 sends UPS system status and history information to a local terminal in RS- 232 format. No modem is required. The Present Status Report screen is sent to the local terminal whenever a new alarm occurs. Commands for requesting information and for changing the date and time are in Table 10.

Local Reporting to a Monitor

A monitor connected to this port will display the same alarm information being sent to the local ter- minal. This monitor does not display information going out through the modem port.

Site Reporting: SiteScan or SNMP

The SiteScan port sends UPS system information to a Liebert SiteScan Central Monitoring System. UPS operation, environmental control systems and facility security can all be monitored from a single location. This information can also be sent via SNMP interface to a local network or building manage- ment system.

If your site has SNMP communications, the optional Liebert SiteNet Integrator allows you to monitor the status of all the dry-contact outputs of the Liebert Series 610. The Integrator module monitors up to 10 digital inputs and two temperature/humidity sensors and can control two external devices with contact closure outputs. It can be programmed to activate local audible and visual alarms in addition to network “traps.”

Other communications options include the use of an Ethernet-based Liebert Network Management System. Contact your local Liebert representative for further details.

71

Image 77
Contents Liebert Series 610 UPS Battery Cabinet Precautions Table of Contents Specifications MaintenanceFigures Tables Important Safety Instructions Multi-Module UPS, 100-500kVA System DescriptionMulti-Module UPS, 500-750kVA Designed for Success ReliabilityTypes of System Control Cabinets SCCs Input Power Failure Safety PrecautionsModes of Operation Other Factors to ConsiderOperator Controls 1989-2003 Options BatteryModule Battery Disconnect Battery Racks or CabinetsThree Breaker Maintenance Bypass Two Breaker Maintenance BypassSystem Control Cabinet General Component DescriptionsUPS Module Battery PlantSoftware Detailed Component DescriptionsControls Hardware Rectifier/Charger Input Power FactorOperation Input Circuit BreakerBattery Disconnect Battery Charging CircuitBattery Charge Current Limiting Battery Equalize Charge CircuitUnbalanced Load Characteristics Non-Linear Load CharacteristicsInverter Output Regulation and Overload PerformanceShorted SCR Monitoring Static BypassFuse Protection Load Transfers Static Switch IsolationPulsed Parallel Operation Transfer and Retransfer Conditions Retransfer Inhibited Redundant ModeDisplay Screen and Operator Controls FeaturesDescription Function 500kVA1000kVA Operation Description Location Function Refer to 3.4.5 Shutdown ProceduresNumbers are used as keys to data in , below Switches behind SCC control panel door Menu tree Menu Tree NavigationModule Master Menu Master Menu ScreenSCC Master Menu Operation Output Metering Displays SCC Monitor/Mimic Display ScreenInput Metering Displays Item 7 Alarm Messages Status/Alarm Message AreasItem 5 Module Status Messages Item 6 System Status MessagesModule Monitor/Mimic display screen Module Monitor/Mimic Display ScreenItem 5 Alarm Messages Alarm MessagesModule Display SCC DisplayMonitor/Mimic display example Utility fail 2700kVAKVA//2170 KWkW 325A0A 325A0A 325A0A Upsinputpwr Battery MOD 1 OFF Line SUM ALM MVODLTS2 OFF540 Line SUM ALM Walk-in display screen during start-up Walk-In Display ScreenPresent Status Status Reports ScreensModule Status Report Event HistorySCC Status Report History status report screens History StatusAlarm in SCC Alarm in Module Alarm conditions that freeze history data gatheringSystem Status Battery Cycle Monitor-Module OnlyBattery cycle monitoring summary screen SCC system configuration screen System Configuration ScreensDate screen DateTime screen TimeAuto Dial Auto dial setting screenMaximum Auto-Retransfer Attempts Modem Baud RateLanguage Selection System Current RatingSystem Options Retransfer AttemptsContinuous Duty Static Switch Optional Battery test screen-MMU onlySCC and module remote monitor indications Remote MonitorModule alarm limit settings screen Alarm Limit Settings ScreenTemperature Limit Setting Optional Battery Float VoltageRefer to 3.4.3 Load Transfer Procedures for more details Load Transfer Procedures ScreenRefer to 3.4.1 SCC Start-Up Procedure for more details Start-Up Procedures ScreenModule start- up procedures screens Shutdown Procedures ScreenSCC shutdown procedures screen Battery time screen 15 minute discharge Battery Time Screen Module OnlyElapsed Time Minutes Upper Limit Actual Lower LimitOperation Meter calibration screen Meter Calibration ScreenBattery equalize screen Battery Equalize ScreenSystem Status Messages Alarm and Status Messages Module Status MessagesAbbreviation Definition Abbreviations used in alarm messagesLoad Block Messages Alarm messages meaning and corrective action Static Switch Manual ResetBypass Phase Control PowerInverter Fault Reverse PowerTransfer Module N OffOvertemperature Battery OvertempTimeout New AlarmSpecial Functions Alarm messages summaryAlarm Message Worldwide Reporting Communication InterfacesAuto-Dial Requesting InformationSite Reporting SiteScan or Snmp Local Reporting to a TerminalLocal Reporting to a Monitor Separate / Simultaneous Outputs Liebert Series 610 terminal commandsRemote Monitor Panel Circuit breaker abbreviations Abbreviation Circuit Breaker OK to Transfer Load on BypassLoad on bypass, UPS available Momentary Overloads Momentary overload, pulsed static bypass switchInput power fail-load on battery Input Power Failure-Load on BatteryOne module off-line, load on UPS One Module Off-LineLoad on UPS-battery not available Off BatteryEmergency Modules Off Refer to 3.4.5 Shutdown ProceduresEmergency power off Remote Emergency Power OffSystem Shutdown Refer to 3.3.10 Maintenance BypassLoad on maintenance bypass, two breakers Refer to 3.5 Automatic Operations for more details Manual ProceduresSCC Start-Up Procedure Operation Operation SCC start-up procedures screen UPS Module Start-Up Module start-up procedures screen Operation Manual Transfer Instructions UPS Lead Load Transfer ProceduresIf the load is on the UPS System Bypass Maintenance Bypass Load TransfersIf the load is on Maintenance Bypass Shutdown Procedures System Shutdown Procedure Module Shutdown Procedure Local Emergency Modules Off Lemo Remote Emergency Power Off RepoAutomatic Operations Automatic Transfers to Bypass Overloads Without Transfer1000% 150%Automatic Emergency Modules Off Automatic Retransfers to UPSAutomatic Module Off-Line Maintenance Maintenance Agreements The Signature Program Liebert Global ServicesProfessional Start-Up TrainingAir Filters Routine MaintenanceRecord Log Limited Life Components Battery Safety Precautions Battery MaintenanceAvertissement Number of Cells Battery Voltage VDC Nominal Float Matching Battery Cabinets OptionalRack-Mounted Batteries Battery retorque valuesBattery voltage record Torque Requirements Torque specifications unless otherwise labeledDetection of Trouble Upstream Feeder Circuit Breaker Setting Inspections Reporting a ProblemCorrective Actions Recommended Test EquipmentKVA Power factor pf KVARating Environmental Conditions Specifications applicable to environmentBattery Operation AdjustmentsElectrical Specifications Specifications 112 Page Locations
Related manuals
Manual 112 pages 3.63 Kb

Series 610 specifications

The Emerson Series 610 is a cutting-edge solution for precise process measurement and control, designed specifically for industries where accuracy and reliability are paramount. This advanced instrument, often utilized in oil and gas, chemical processing, and water treatment sectors, combines innovative technology with robust features to meet the demanding requirements of modern industrial applications.

One of the standout features of the Series 610 is its exceptional measurement accuracy. The device employs advanced sensor technology that enables precise determination of variables such as pressure, temperature, and flow. This accuracy translates into improved process efficiency and enhanced product quality. With a wide range of measurement capabilities, the Series 610 can handle varying process conditions and fluid types, making it versatile across different applications.

The heart of the Emerson Series 610 lies in its intelligent diagnostics and predictive maintenance functionalities. This built-in technology allows for real-time monitoring of the device's operational status, providing valuable insights into performance trends. By detecting anomalies early, users can take proactive measures to prevent potential failures, thereby reducing downtime and maintenance costs.

Moreover, the Series 610 is designed with user-friendly features. Its intuitive interface and easy-to-navigate menus facilitate quick setup and configuration, enabling operators to be productive from the outset. The device also supports various communication protocols, including HART and FOUNDATION fieldbus, ensuring seamless integration into existing control systems and enhancing overall automation capabilities.

Another notable characteristic of the Emerson Series 610 is its robust construction. Designed to withstand harsh environmental conditions, it is built with durable materials that offer high resistance to corrosion and physical damage. This durability ensures longevity and reliability, even in the most challenging industrial environments.

In summary, the Emerson Series 610 represents a significant advancement in process measurement technology. With its exceptional accuracy, intelligent diagnostics, user-friendly design, and robust construction, it is an ideal choice for industries seeking to enhance their operational efficiency and reliability. Its ability to seamlessly integrate into existing systems further solidifies its position as a leading solution in the field of industrial measurement and control. As industries continue to evolve, the Series 610 is poised to meet the challenges of the future with confidence and precision.