Texas Instruments TMS320C6712D Power-supply sequencing, Characteristics of the Power-Down Modes

Page 56

SPRS293A − OCTOBER 2005 − REVISED NOVEMBER 2005

Table 32. Characteristics of the Power-Down Modes

PRWD FIELD

POWER-DOWN

WAKE-UP METHOD

EFFECT ON CHIP’S OPERATION

(BITS 15−10)

MODE

 

 

 

 

 

 

000000

No power-down

 

 

 

 

001001

PD1

Wake by an enabled interrupt

CPU halted (except for the interrupt logic)

Power-down mode blocks the internal clock inputs at the

 

 

 

 

 

Wake by an enabled or

boundary of the CPU, preventing most of the CPU’s logic from

010001

PD1

switching. During PD1, EDMA transactions can proceed

non-enabled interrupt

 

 

between peripherals and internal memory.

 

 

 

 

 

 

 

 

 

 

Output clock from PLL is halted, stopping the internal clock

 

PD2

 

structure from switching and resulting in the entire chip being

011010

Wake by a device reset

halted. All register and internal RAM contents are preserved. All

 

 

 

functional I/O “freeze” in the last state when the PLL clock is

 

 

 

turned off.

 

 

 

 

 

 

 

Input clock to the PLL stops generating clocks. All register and

 

 

 

internal RAM contents are preserved. All functional I/O “freeze” in

011100

PD3

Wake by a device reset

the last state when the PLL clock is turned off. Following reset, the

PLL needs time to re-lock, just as it does following power-up.

 

 

 

 

 

 

Wake-up from PD3 takes longer than wake-up from PD2 because

 

 

 

the PLL needs to be re-locked, just as it does following power-up.

 

 

 

 

All others

Reserved

When entering PD2 and PD3, all functional I/O remains in the previous state. However, for peripherals which are asynchronous in nature or peripherals with an external clock source, output signals may transition in response to stimulus on the inputs. Under these conditions, peripherals will not operate according to specifications.

The device includes a programmable PLL which allows software control of PLL bypass via the PLLEN bit in the PLLCSR register. With this enhanced functionality comes some additional considerations when entering power-down modes.

The power-down modes (PD2 and PD3) function by disabling the PLL to stop clocks to the device. However, if the PLL is bypassed (PLLEN = 0), the device will still receive clocks from the external clock input (CLKIN). Therefore, bypassing the PLL makes the power-down modes PD2 and PD3 ineffective.

Make sure that the PLL is enabled by writing a “1” to PLLEN bit (PLLCSR.0) before writing to either PD3 (CSR.11) or PD2 (CSR.10) to enter a power-down mode.

power-supply sequencing

TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However, systems should be designed to ensure that neither supply is powered up for extended periods of time (>1 second) if the other supply is below the proper operating voltage.

system-level design considerations

System-level design considerations, such as bus contention, may require supply sequencing to be implemented. The core supply should be powered up prior to (and powered down after), the I/O buffers. This is to ensure that the I/O buffers receive valid inputs from the core before the output buffers are powered up, thus, preventing bus contention with other chips on the board.

power-supply design considerations

A dual-power supply with simultaneous sequencing can be used to eliminate the delay between core and I/O power up. A Schottky diode can also be used to tie the core rail to the I/O rail (see Figure 13).

56

POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443

Image 56
Contents SPRS293A − October 2005 − Revised November Table of Contents Revision History Pages ADDITIONS/CHANGES/DELETIONSMultichannel Buffered Serial Port Timing Bottom View GDP and ZDP BGA package bottom viewGDP and ZDP 272-PIN Ball Grid Array BGA Package Description Device characteristics Characteristics of the C6712D ProcessorHardware Features Internal Clock C6712DDevice compatibility Functional block and CPU DSP core diagram Digital Signal ProcessorCPU DSP core description ST1 DA1DA2 ST2Memory Block Description Block Size Bytes HEX Address Range Memory map summaryMemory Map Summary Peripheral register descriptions Emif RegistersL2 Cache Registers HEX Address Range Acronym Register NameInterrupt Selector Registers Device RegistersEdma Parameter RAM† HEX Address Range Acronym Register Name CommentsEdma Registers Quick DMA Qdma and Pseudo Registers†PLL Controller Registers Gpio RegistersHEX Address Range Acronym Register Name Comments Timer McBSP0 and McBSP1 RegistersSignal groups description Clkin CLKOUT3 CLKOUT2† CLKMODE0 Pllhv TMS TDO TDI TCK TrstJtag BIG/LITTLE EndianTOUT1 TINP1 CLKR1CLKS1† GpioDevice Configurations Device configurations at device resetConfiguration GDP/ZDP Functional Description PIN BOOTMODE10Emifbe LendianBIT # Name Description Devcfg register descriptionEksrc Terminal Functions IPD Description Name GDP IPU‡ ZDP PIN SignalTerminal Functions Bootmode BOOTMODE1 C19 BOOTMODE0 C20 IPDEMU1B9 EMU0D9 IPU LITTLE/BIG Endian FormatIPD Description Name GDP IPU‡ ZDP Resets and Interrupts Only one asserted during any external data accessEdge-driven Decoded from the two lowest bits of the internal addressEmif − Address # Emif − Data #TIMER1 TIMER0IPD Description Name GDP IPU‡ ZDP Emif − Data # Multichannel Buffered Serial Port 1 McBSP1Reserved for Test Multichannel Buffered Serial Port 0 McBSP0GENERAL-PURPOSE INPUT/OUTPUT Gpio Module IPD Description Name GDP IPU ZDP RSV IPURSV IPD Additional Reserved for TestSPRS293A − October 2005 − Revised November Name GDP ZDP Supply Voltage Pins See the power-supply decoupling portion of this data sheetDvdd CvddDescription Name GDP ZDP Supply Voltage Pins Ground PinsVSS GNDSignal Name PIN GDP ZDP TYPE† VSS GNDDescription GDP Name ZDP Ground Pins VSSHardware Development Tools Development supportSoftware Development Tools Fully qualified production device Device supportDevice and development-support tool nomenclature Temperature Range Default 0C to 90C PrefixDevice Family TechnologyDocumentation support CPU CSR register description Revision IDPwrd PCC DCC Pgie GIEPCC CPU CSR Register Bit Field DescriptionCPU ID L2MODE Cache configuration Ccfg register descriptionCcfg Register Bit Field Description DSP Interrupt Default Selector Module Control Interrupt sources and interrupt selectorDSP Interrupts Interrupt Selector EventEdma Selector Edma module and Edma selectorEdma Channels ESEL1 Register 0x01A0 FF04 ESEL3 Register 0x01A0 FF0CPLL and PLL controller PLL Lock and Reset Times Clkout Signals, Default Settings, and ControlEnabled or Disabled MIN TYP MAX UnitGDP 150and ZDP Clock SignalPLL Clock Frequency Ranges†‡ Pllcsr Register 0x01B7 C100 PLL Control/Status Register PllcsrPllm Register 0x01B7 C110 PLL Multiplier Control Register PllmDxEN OD1EN OSCDIV1 Register 0x01B7 C124Oscillator Divider 1 Register OSCDIV1 DIR General-purpose input/output GpioGP7 GP6 GP5 GP4 GP2 Power-down mode logic Pwrd Field of the CSR Register PD3 PD2 PD1Power-supply sequencing Characteristics of the Power-Down ModesPower-supply design considerations System-level design considerationsPower-supply decoupling Supply Schottky Diode Core SupplyGND Dvdd C6000Ieee 1149.1 Jtag compatibility statement Emif device speed Example Boards and Maximum Emif SpeedEmif big endian mode correctness BootmodeReset Emif Data Lines Pins Where Data PresentIOH Recommended operating conditionsMIN NOM MAX Unit Parameter Test Conditions MIN TYP MAX Unit IOZSignal transition levels Parameter Measurement Information42 Ω Vref = 1.5AC transient rise/fall time specifications = 0.3 tcmax† VIL max VUS max GroundTiming parameters and board routing analysis Output from DSP Control Signals † Output from DSPBoard-Level Timings Example see Figure See Figure Input and Output ClocksTiming requirements for CLKIN†‡§ Timing requirements for ECLKIN§ see Figure Clkin CLKOUT3MIN Eclkin EclkoutAsynchronous Memory Timing Timing requirements for asynchronous memory cycles†‡See −Figure AreSetup = Strobe = Not Ready Hold = CE30 BE10 EA212ED150 Read Data AOE/SDRAS/SSOE† ARE/SDCAS/SSADS† AWE/SDWE/SSWE† ArdyAOE/SDRAS/SSOE † ARE/SDCAS/SSADS † AWE/SDWE/SSWE † Ardy CEx BE30 EA212ED310 SYNCHRONOUS-BURST Memory Timing Unit MIN MAXCE30 BE10 BE1 BE2 BE3 BE4EA212 ED150 ARE/SDCAS/SSADS † AOE/SDRAS/SSOE † AWE/SDWE/SSWE†150 Synchronous Dram TimingTiming requirements for synchronous Dram cycles† see Figure AOE/SDRAS/SSOE † ARE/SDCAS/SSADS† AWE/SDWE/SSWE† Read EclkoutEA2113 Bank EA112 Column EA12 ED150 Write Eclkout EA2113EA12 ED150 AOE/SDRAS/SSOE † ARE/SDCAS/SSADS † AWE/SDWE/SSWE †Actv Eclkout CE30 BE10 EA2113 Bank Activate EA112 Row Address EA12 ED150AOE/SDRAS/SSOE† ARE/SDCAS/SSADS† AWE/SDWE/SSWE† Dcab EclkoutDeac Eclkout CE30 BE10 EA2113EA112 EA12 ED150 Refr EclkoutMRS Eclkout CE30 BE10 EA212 MRS value ED150HOLD/HOLDA Timing Timing requirements for the HOLD/HOLDA cycles† see FigureHold Hold HoldaBusreq Timing Eclkout BusreqCLKMODE0 = Reset TimingTiming requirements for reset†‡ see Figure Phase Emif Z Group † Emif Low Group † Boot and DeviceEXTINT, NMI External Interrupt TimingTiming requirements for external interrupts† see Figure Multichannel Buffered Serial Port Timing Timing requirements for McBSP†‡ see FigureParameter Clks Clkr FSR intBitn-1 ClkxTiming requirements for FSR when Gsync = 1 see Figure ClksFSR external CLKR/X no need to resync CLKR/X needs resync Master Slave Unit MIN MAXBit Bitn-1 Parameter MASTER§ Slave Unit MIN MAXClkx FSX McBSP Timing as SPI Master or Slave Clkstp = 11b, Clkxp = Multichannel Buffered Serial Port Timing McBSP Timing as SPI Master or Slave Clkstp = 10b, Clkxp = McBSP Timing as SPI Master or Slave Clkstp = 11b, Clkxp = TINPx TOUTx Timer TimingTiming requirements for timer inputs† GPIx GPOx GENERAL-PURPOSE INPUT/OUTPUT Gpio Port TimingTiming requirements for Gpio inputs†‡ Unit MIN MAX TCK TDO TDI/TMS/TRST Jtag TEST-PORT TimingTiming requirements for Jtag test port see Figure Package thermal resistance characteristics Thermal resistance characteristics S-PBGA package for GDPThermal resistance characteristics S-PBGA package for ZDP Mechanical DataOrderable Device Status Package Pins Package Eco Plan Packaging InformationMSL Peak Temp QtyGDP S-PBGA-N272 Seating Plane 4204396/A 04/02ZDP S-PBGA-N272 Seating Plane 4204398/A 04/02Important Notice

TMS320C6712D specifications

The Texas Instruments TMS320C6712D is a high-performance, fixed-point digital signal processor (DSP) that belongs to the TMS320C6000 family, well known for its advanced processing capabilities tailored for demanding signal processing applications. Launched in the early 2000s, the C6712D combines high computational power with a rich set of features, making it suitable for a variety of applications such as telecommunications, audio processing, and industrial control systems.

One of the standout characteristics of the TMS320C6712D is its architecture, which is based on a highly efficient VLIW (Very Long Instruction Word) design. This architecture allows the processor to execute multiple instructions in a single clock cycle, significantly increasing performance. The device operates at clock speeds of up to 150 MHz, providing substantial computational throughput that can handle complex algorithms and real-time processing tasks.

Another key feature of the TMS320C6712D is its 32-bit fixed-point processing capabilities, which allows it to perform difficult mathematical computations efficiently. With an instruction set optimized for DSP applications, the processor includes specialized instructions for multiplying and accumulating operations, as well as support for advanced filtering and generation of audio signals.

The C6712D offers an extensive memory architecture, supporting up to 128 MB of external memory via a 32-bit data bus. It features on-chip SRAM, which provides fast access to data and program storage, enhancing the system's overall performance. Additionally, the device includes a powerful set of peripherals, such as dual asynchronous serial ports (UART), I2C interfaces, and DSP-specific interfaces that facilitate connectivity with other components and systems.

Power consumption is another vital aspect of the TMS320C6712D. It incorporates technologies allowing for low-power operation, which is essential for portable and battery-operated devices. The capability to operate in various power modes helps optimize performance while minimizing energy usage.

In conclusion, the Texas Instruments TMS320C6712D is a versatile and powerful DSP that excels in high-performance applications. Its VLIW architecture, fixed-point processing capabilities, extensive memory options, and low power consumption make it an ideal choice for engineers looking to implement complex signal processing tasks efficiently. Whether used in telecommunications, audio processing, or industrial applications, the C6712D remains a reliable and capable solution in the digital signal processing landscape.